Video Surveillance Bandwidth Guide

By IPVM Team, Published on Dec 16, 2016

Bandwidth is one of the most fundamental, complex and overlooked aspects of video surveillance.

Many simply assume it is a linear function of resolution and frame rate. Not only is that wrong, it misses a number of other critical elements and failing to consider these issues could result in overloaded networks or shorter storage duration than expected.

In this guide side, we take a look at these factors, broken down into fundamental topics common between cameras, and practical performance/field issues which vary depending on camera performance, install location, and more.

free image

Fundamental Issues

  • Resolution: Does doubling pixels double bandwidth?
  • Framerate: Is 30 FPS triple the bandwidth of 10 FPS?
  • Compression: How do compression levels impact bandwidth?
  • Codec: How does codec choice impact bandwidth?
  • Smart codecs: How do these new technologies impact bandwidth?

Practical Performance/Field Issues

  • Scene complexity: How much do objects in the FOV impact bitrate?
  • Field of view: Do wider views mean more bandwidth?
  • Low light: How do low lux levels impact bandwidth?
  • WDR: Is bitrate higher with WDR on or off?
  • Sharpness: How does this oft-forgotten setting impact bitrate?
  • Color: How much does color impact bandwidth?
  • Manufacturer model performance: Same manufacturer, same resolution, same FPS. Same bitrate?

Scene Complexity

The most basic commonly missed element is scene complexity. Contrast the 'simple' indoor room to the 'complex' parking lot:

varying scene complexity

Even if everything else is equal (same camera, same settings), the 'complex' parking lot routinely requires 300%+ more bandwidth than the 'simple' indoor room because there is more activity and more details. Additionally, scene complexity may change by time of day, season of the year, weather, and other factors, making it even more difficult to fairly assess. 

We look at this issue in our Advanced Camera Bandwidth Test.

Inside, we cover the 10+ other issues listed above.

**********

** *******, * ****** relationship ****** ******* ***** count (***, ***, ***.) and *********. ** *** example, ** * *** camera **** * **/* of *********, * *** camera ** ************ *** ~***/*. 

*******, ********** ****** ************* and ****** *** ***********. In **** *******, **** cameras ******** ** * far **** **** ****** level (*.*., **** **% more ********* *** ***% more ******) ***** ****** rose ** *** ******* than ****** (*.*., **** 200% **** ********* *** 100% **** ******). ***** were ** ******* ******* / ******* **** ************* why ****** ******** ** their **** ** ********.

** * **** ** thumb, * ** ***** *** be **** **** ********** bandwidth ********** ****** **********. However, ** ******** ********* measurements ** ****** ******* as **** * **** of ***** *** ** off ** * ***.

Frame ****

***** **** ******* *********, but *** *****-***** ****** such ** *.***, ** is **** **** ******. So ** *** ******** frame **** ** ***, the ******** ** ********* is ****** ** ** far ****, ***** **** 3 ** * ***** more *********. ************ ****, we **** **, **, and * *** ************ to *********** *** ****** in *** **** ** a ********** ******* ** our ********** ****. *** average ******** **** ** follows:

  • * ***: *.*** **/*
  • ** ***: *.*** **/* (10x *** ****** ** 1 ***, *** **** 4x *********)
  • ** ***: *.*** **/* (3x *** ****** ** 10 ***, *** **** double *********. *** ****** of * ***, *** only ** *********)

(***** ************ **** **** at 1 * ***** *** second **** ************ ************ ~28.)

*** **** ****** ** frame ****'* ****** ** bitrate, *** *** ***** **** ***** *** Video ************.

***********

***********, **** ***** ** quantization, *** ** ******* relationship ** *********: *** higher *** ***********, *** lower ********* **** **.

********: *********** *** ********** are *** ********* ******. In **** *******, ** routinely *** ************* *** the ***. **********, ** our ********, ** *** number ** ****** ** an ***** / *****. Compression ** *** ******* compressed ***** ****** ***.

*** *******, *** ***** below ***** *** ****** of *********** ****** **** ********* cameras (****: **** *.***, quantization / *********** ** measured ** * ******** scale ** * ** 51, ****** ******* **** compression, ***** *******).

******** ************ **** ** (high ***********) ** ** (average) ******** ** ** least * ** ******** in *********, ***** ******* lowering ** ** ** (very *** ***********) ******** increases ** *-*** ********* on *** ******.

************, ************* *** ********* scales *** *********** *** their *********** ****** **** most ****** ****** ********** of **** ****** ************ level ** ****. **** may *** * ******* scale **** *-***,***** ****** *** ****** such ** "***, ****, best", *** ****** *** the ****** *-** ************ scale. **** ***** ***** just **** ** *** options ** ***:

*** *** ** ****** ************ *********** Comparison *** **** ****** ** understanding ************ *********** *** how ** *********** * levels ****** ********* *****. 

******

* *** *************** ****** codecs ** ********** *****-****** (*.*., *.***, *.***) vs *****-***** **** (*.*.,*****, ********). 

  • *****-***** ****** **** ** H.264/265 *** **** ******** similar ****** ** ** image, **** ********* ******** frames *** ******** **** the ******* ** *** scene **** ***** ** frame, *********** * ***** bandwidth *******. *** *******, if * ******* ***** ******* an ***** *******, **** the ****** ********** *** change ******* ****** *** are ***********, ***** *** static ********** ** ***.
  • *****-***** **** ****** ****** **** individual ***** ** ** image, *********** ******* ****** to ****** *******. **** results ** ****** ********* as **** ***** **** be **-******* *****, ********** of *** ******** ** the *****.

*** **** ** ***** and ***** ***** ***********, *** *** ***** ********.

*** **** ******** ** cameras ** *** *****, and *** *** **** several *****, *** *.***, due ** *** ********* advantages **** ****-* *** Motion ****. ** *** *.*** *******- ******* *** ********* Tested ********, *.*** ******** *** less ********* ** *** scenes **** *****, **** in *** ***** *****:

h 264 vs mjpeg scene complexity

What ***** *.***?

*.*** *** **** *** "next *** *****" ** codecs *** ******* *****, claiming **% ******* **** H.264, *** ****** *** VMS ******* *** ** remain ********** ****. ************, in *** *****, *.*** has *** ******* ******* over *.*** ** ******* scenes, ***** **-**% ** average, **** *.*** ***** codec ******* (*** ******* below) ********* ********* ****** bandwidth ******* **** *.***.

*** *******, ** *** ***** *.*** ******* ****, *.*** ******** ~**-**% lower ******** **** *.*** (with ***** ****** *** on ****), ***** ** the ***** *****. *******, using ***** ****** **** H.264, ******** ******* ** at ***** ~**% (******* still *****) *** ** much ** **%+.

daytime wisestream comparison

**** **** *.*** ** still **********, *** **** likely ****** **** ********* over ****, ** *.*** has. 

******* ****** *** *** *.*** / **** ***** Tutorial *** **** ******* ** H.265 ******, ********* ********, camera *******, *** *** integration.

I-Frames **. *-****** 

** *****-***** ******, ****** which ******* *** **** field ** **** *** called *-******, ***** ***** sending **** ******* *** P-frames. ******* **** ******* a **** *****, *** more *-****** ** * stream, *** ****** *** bandwidth.

*** *****, ******* **** typically **** **** ** use * ***** *-***** ********, measured ****** ** ******* or ******. ******* *** few *-****** ***** ********** impact *******, **** **** "trails" ** ******** *********, ***** too **** *-****** ******** ****** to ** ******* *******, seen ** **** ***** from *** ****: *.*** * ** P ***** ******.

*******, **** *** ************ of ***** ****** ** the **** *-* *****, cameras *** *** **** to *********** ****** *-***** interval, ******* ** ***** a ***** *****. ** where * ******* ** FPS ****** ***** ** set ** **** ** I-frame ***** ******, * smart ***** ******* ***** would ****** **** **** there ** ** ****** in *** *****, ***** in **** *******:

gop

***** ****** *** * complex *****, ******* ** more ****** ***** *** in *** ***** ***** *****

***** *-***** ******** *******

****** **** ******* *** smart ***** ******* *** do *** *** ***** I-frame *********, **** (********** older ******) ** *** and ***** *** ****** choose *** ** *** them, ** ** ** important ** ********** *** impact ** *-***** ******** on *********.

******** *** ****** ** I-frames (****** **** * to * ** * second ********) ******** ******* bandwidth **********, ** **** below, ******* *** ****** negative ***** ******* ******.

*********, ********** *** ****** of *-****** ** **** than *** *** ****** significantly ********* *********, ******* the ***************** ***** *******.

*** **** ******* ** I *** * ***** impact ** ********* *** image ******* *** *** *.*** * ** * Frame ****

Smart ******

*** ********** ****** *********** with **** ****** ** bandwidth ** *** ************ of ***** ******. ***** technologies ********* ****** ******* in *** ****:

  • ******* ***********: *****, ******* ** ***** a ****** *********** ***** for *** ***** *****, the ****** *** ***** little *********** ** ****** objects, **** ****** ***********/***** quality ** ****** ********** areas, ***** ** **** often do *** **** ******** images ** ***** ***** of *** *****.
  • ******* *-***** ********: ******, instead ** ***** * steady *-***** ********, ******* may ******** *** ******** between *-****** **** *** scene ** *****, **** some ********* ** **** long ********* ** *** tests, **** * ****** in **** *****. ****, when ****** ******, *** camera *********** ********* ** I-frame *** ******* ******** to ******** ******.

**** ***** ****** *** use ***** ******* ** well, **** ** ******* framerates (**** ******/********), *********/*************** ***** ********* (********* ***** ******), *** ******.

***** ******* **** ** each ***** ***** *** their ************* ****. *******, in *******, ******** ** still ****** **** ******* by **-**% ** *** tests, **** **** **% possible.

** ** *******, ** our **** ** ********* 2, ******** ******* ** ~99% ** ***** ****** using ******* ***********, *-***** interval, *** ***:

daytime wisestream comparison

*** **** *******, *** our ***** ***** *****.

Camera ***** ** ****

***** ** ****'* ****** on ********* ****** ********* on which ***** ******* **** complex ******* ** *** scene. ** ****** **** large ***** ** ****** objects, **** ** ***** or ***** ******* **********, widening *** ***** ** view **** ****** ******** bandwidth. ** ****** **** relatively *** ******** *** repetitive ***********, **** ** parking ****, *******, ********* carpet ** *****, ***., narrowing *** ***** ** view **** ******** ********* due ** **** ** these **** ******* ***** discernible.

*** *******, ** *** park ***** *****, ********** the ***** ** **** results ** * ~**% ******** in ********* *** ** more ****** ******* *** shadows ** *** ***** compared ** *** ******** field ** ****.

*******, ** * ****************/**********, ********* ********* ** over **% ** *** cameras ***** **** ******** the ***** ** ****. In *** ******** ***, more ******* ** ********* are *******, *** *** repetitive ******* ** *** asphalt ******* *** *** be **** ** ****, making *** ***** **** difficult ** ******.

*** ******* ******* ** field ** ****'* ****** on *********, *** *** ******** ****** ********* ****.

Low *****

******** ** *** ****, low ***** ******** **** an ******* ** ****** 150% ****** (**** *****), though ********** ******* ****** from ~**% ** **** 400% *** ** * number ** *******, **** as ********** ** *******, compression **********, ****** ***********, and ****.

cameras

*** *** ************ ** IP ******* **** ******* nighttime ********* ****** ** recent *****:

  • ******* ***** ******************* **** ******** ** recent *****, ******* ******** these ****** ** **** cameras (*** ********* *** *****).
  • *** ********* *** ** integrated ** *******, *** nearly *********, ******* ** smaller ****** ** *****. Compared ** ****** ***% in **** ***** ** non-IR ***/***** ******, ********** IR ******* ********* ** an ******* ** ****** to ***%.

*** **** ******* ** low *****'* ****** ** bandwidth, *** *** ********* ** *** ***** **** ******.

Wide ******* ***********

***'* ****** ** ******* varies ********* ** *** camera *** *** *****. Again ****** ******** **** our******** ****** ********* ****, **** ********* *** on ** ** **** WDR ** ** ******* intersection *****, ********* *********, as **** ******* *** visible (******* *** ***** of *********, ** *** treeline, ***.). 

wdr impact on bandwith1

*******, ******* ** ** ******* track *** ****** *****, bandwidth *********. ** **** case, *** ***** ********* ******** slightly ** **** ***** of *** *****, **** as *** ***** *** bleachers ** *********/****** *** ***. ******* of ****, ***** ***** are **** ********* ******* and ****** ** ********, lowering *******.

wdr impact on bandwith2

**** **** *** ***** cameras, ***** ******* *** vary, ********* ** *** well **** ****** ***** and **** *****, *** they ****** ******** **** WDR ** ****** **, and ****.

*********

********* *** * **** impact ** ********* ***********, yet ** ** ****** considered ****** *************, **** by *********** ***********.********************* **** **** (****** rarely *********** ******) ******* of *** *****, **** as ****** *** ****** patterns, ***** ** ****** and ****** ** *****, etc. ******* **** ****** is *****, ********* *********.

*** *******, ** *** FOV ***** (**** *** ******** ****** ********* ****), ******* ********* ** ****** 600% **** ******* ** maximum ********* ** **************, *** ****** ***% in *** **** *****.

sharpness impact on bandwidth

Color **. **********

** ********* ****** (******* desaturation ** ************** *******), color *** ******* ****** on *********. ** *** examples *****, ****** **** default ***** ******** ** monochrome ********* ********* ** 20 **/*, ***** ** 8% ********.

*******, ************** *** ******** ********** **** *********. In **** *******, ********* increases ** **** ***% when ******** ***** ******** from ******* ** ***** highest *****, ***** **** creates ************** ******* **** as ***** ******** (**** in *** *** *****).

color vs monochrome

*** ********* ******* ** a ************ ************ ***** video ** '****' ********* is ******* ********* ******* **** (which ** ****** ****).

Manufacturer ***** ***********

****** ******** ****** ** a ***** ************'* ****, significant *********** ** ******* may *****, ******* *** cameras ***** *** **** resolution *** *********. **** may ** *** ** different ***** ******* ** ********** being ****, ********* ******* settings ** **** *****, better ** ***** *** light ***********, ** *** number ** ***** *******.

*** *******, *** ********* image ***** *** *******, an **** ***** *** Axis *****, **** ****, 10 ***, *** ** a ~**' ********** ***, at *********** ** ~***. Despite ***** ******* ***** standardized, ** **** **** lit ****** *****, *** Q1604's ******* *** *** Kb/s ***** *** ***** consumed *.** **/*, ****** 3x *** *********.

******: ***** *********** **** become **** ******* ** some *****, ** **** cameras *** ******* ***** codecs ***** ****** ** the **** **** *** not. 

Measure **** *** *******

** **** ***** *****, there *** *** ****, safe ***** *** ********** bandwidth (*** *********) *******, abstractly. *** **** ******* impact **, *** **** of **** *** ****** by ********** ** **** factors ****** *** ******. 

****** ** ** ********* to ********** ***** ******* impact *********, *** **** knowledge **** **** *** measurements ** *** ******* you **** ** ******. This **** ****** *** most ******** ********* *** planning *** ***********.

[****: **** ***** *** originally ******** ** ****, but *** **** ************ and ******* **** ********** information, ********* ***** ****** and *.***]

Comments (19)

Excellent article Ethan !!... keep up the good work. If only the much publisized 4G cellular connections can keep up in terms of bandwidth with IP Megapixel cameras live streaming, I would have a lot of satisfied customers .... I've heard rumors that in reality 4G is 3.8G at best (misleading marketing used by the carriers)...

Depends on which 4G: HSDPA, WiMax Advanced, or LTE Advanced. HSDPA is 3G rebadged by AT&T and was a transitional tech between 3G and 4G. There were a few transitional network standards badged as 3.5G, 3.75G, etc. Generally the transitional standards didn't meet one or more requirements of the 4G label.

Solid technical detail here Ethan. Really nice work.

Probably the most important article... with the fewest unique hits.

:)

B, thanks, lol!

It's doing pretty well in terms of traffic, but it's not going to rival news pieces in the short term.

That said, we wrote this as a fundamental resource for industry people to reference and for us to use in our classes.

Ethan, what was the resolution used to measure the frame rate impact on bandwidth?

We've done multiple frame rate tests at multiple resolutions (SD and HD) over the years. The percentage change remains the same range.

Ethan, thanks for illustrating details.

One question;

Some VMS recommends 20~30% bandwidth usage of the physically available bandwidth to have buffer. For example, it the network is 1GB, it is only recommended to have camera bandwidth usage of 200~300MB.

Is this normal? Is there a tested reason for this?

Yongmu, Typically the advice given is a 20-30% bandwidth buffer, so if it is 1Gb/s, only use 700-800Mb/s. Basically, it's the other way around.

Btw, be careful, capital B mans bytes and networks are measured it bits (lower case B). Specifically bits per second (b/s).

This long-standing rule of thumb is essentially accounting for the packet overhead of TCP/IP.

In simplistic terms, if you have a 1Gbps network, and you have 5GB of data to transfer across the network, you should see a transfer time of 40 seconds (5GB = 40Gb). However you'll likely see a transfer time of at least 50 seconds, because that data has to be broken into packets and transmitted in chunks. The process of adding the destination "address" to the data packets itself creates more data to transfer. You also will have contention with other devices on the network.

The rule of thumb has been a given network can transfer actual data at a rate of about 80% it's rated capacity max.

With network cameras you also have to be mindful that even with CBR settings, the bandwidth output of the camera is not always going to be exact. A camera with a 3Mbps CBR setting might actually end up transmitting 3.1Mbps or more at times.

If you have a dedicated network for cameras/recorder only, I would use no more than 70% of the rated network speed for alloted bandwidth. EG: a 100Mbps network would have 70Mbps of "usable" bandwidth. If you have all cameras capped at 5Mbps, you should be able to support 14 cameras on that network without running into major traffic contention issues.

If the network is shared, it adds a lot more variables.

I was surprised that on same brand, same setups, diferents models could have double of bandwith!. the question on my mind is: where to save money? where to be more efficient? specially on large installations (+100, +500... cameras).

On this example, Axis Q1604 uses 488 kb/s and Axis M3004 uses 1,328 kb/s, having same image quality, but using almost 3x times less bandwith, so I could install more cameras on same network/link or switch port, more eficient on the use of bandwith and also and important too, less space on hard drive to be used on recorded video.

However Q1604 cost 3x times more, around $860 vs. M3004 at $260. (estimated costs)

so, do I should save money on the camera, have more budget to install more cameras, but then need to spend more on the network (more links at 100/1000bps) and more hard drives on the recorder?

It will be nice to have some tool, where we can put this many inputs, and base on the numbers of cameras, discover where is the break point of spend more at the camera side, to save on the network/storage side.

Gigabit switches are common and economical these days. A 1Gbps link supports more than (for example) 200 4Mbps streams. That's a lot of cameras and a lot of video. Network topologies can be designed to balance the bandwidth across links without too much additional cost. But the storage architecture complexity and cost from 200 4Mbps streams would be considerable. So while more network equipment is necessary to support more cameras, I think you'll find that the networking cost pales in comparison to the cost of storage--especially if long retention times are desired.

Ethan, I'm starting the new course next week. Having completed the readings I have a question in advance: are these Bandwidth and Addresssing lessons the same regardless of the transport (i.e. wired or wireless)?

Wireless doesn't show up until lesson 9, so I'm confirming that the principles in the lessons preceding it don't change based on wired or wireless.

The basic bandwidth lessons are the same whether it's wired or wireless. The big difference with wireless (bandwidth) is often you have less of it and wireless bandwidth is less stable. For example, your wired LAN connection is generally not going to drop from 1Gb/s to 400Mb/s but your wireless bandwidth could bounce up and down depending on the weather, what other radios are turned on nearby, if trees grow, etc. We cover those elements in class 9.

Question #2: The 2015 IP Networking book seems to be lacking some of the detail that's in the on-line readings. Is that true or just my imagination?

Should I primarily use the readings and not the book?

Gary, the book has the same core material. Since it's a PDF book, it won't have videos or animated graphics (by definition). Some people like PDFs better, some like to print it out, ergo we give both.

This is a great sales tool too. Many customers don't understand this and showing them both camera's in the same way will help.

Thanks

Great reference, Ethan. FYI, here is a past reference that a few researchers have been using as comparisons, based on varied use cases.

http://ieeexplore.ieee.org/stamp/stamp.jsp?reload=true&tp=&arnumber=7254155

Of course, actual test result reports like yours are more informative than research reports. I hope that in the future there might be an opportunity for a consensus on a few common use cases for bit rate reduction testing.

For example, in our Smart H.265 Samsung Test, H.265 produced ~15-20% lower bitrates than H.264 (with smart CODECs off on both)...

Though with smart CODECs on both, the Q test showed a 40% improvement of h.265 over h.264.

Thanks a lot. It is very useful.

But, I have a question for everybody.

According to above,

"H.265 has been the "next big thing" in CODECs for several years, claiming 50% savings over H.264, but ... has had limited benefit over H.264 in similar scenes, about 10-15% on average, with H.264 Smart CODEC cameras generally providing bigger bandwidth savings than H.265."

where the '50% savings' come from? Is it labratory result?

If it is exactly claimed 50% savings, why current situation is not?

Is it from the limitation of software algorithm and/or processing power?

Very curious.

Read this IPVM report for free.

This article is part of IPVM's 6,594 reports, 889 tests and is only available to members. To get a one-time preview of our work, enter your work email to access the full article.

Already a member? Login here | Join now

Related Reports

China's SMIC Hit By US Trade Restrictions, Impact On Video Surveillance on Oct 13, 2020
US trade restrictions have hit Semiconductor Manufacturing International...
Quantum Dots Potential for Surveillance Cameras Explained on Sep 08, 2020
Quantum dots are starting to be used in TVs for better images, but how will...
Top Video Surveillance Service Call Problems 2020 on Oct 23, 2020
3 primary and 4 secondary issues stood out as causing the most problems when...
The Future of H.266 For Video Surveillance Examined on Aug 17, 2020
First H.264, now H.265, is H.266 next? H.266 was recently announced amid...
Door Fundamentals For Access Control Guide on Aug 24, 2020
Doors vary greatly in how difficult and costly it is to add electronic access...
Remote Network Access for Video Surveillance Guide on Jul 27, 2020
Remotely accessing surveillance systems is key in 2020, with more and more...
Access Control and Video Integration Statistics 2020 on Oct 08, 2020
Video Surveillance and Access Control are two of the most common security...
Verkada Video Analytics Tested 2020 on Oct 08, 2020
In 2019, Verkada released people and face analytics but our testing then...
Augmented Reality (AR) Cameras From Hikvision and Dahua Examined on Oct 19, 2020
Hikvision, Dahua, and other China companies are marketing augmented reality...
Infinova, March Networks and Swann H1 2020 Financials Examined on Sep 02, 2020
While Dahua and Hikvision, helped by fever camera sales, are recovering from...
Mexico Video Surveillance Market Overview 2020 on Oct 20, 2020
Despite being neighbors, there are key differences between the U.S. and...
FLIR A Series Temperature Screening Cameras Tested on Jun 04, 2020
FLIR is one of the biggest names in thermal and one of the most conservative....
Dedicated Vs Converged IP Video Networks Statistics 2020 on Sep 10, 2020
Running one's video system on a converged network with other devices can save...
Drain Wire For Access Control Reader Tutorial on Sep 23, 2020
An easy-to-miss cabling specification plays a key role in access control, yet...
Beware Rigged China Fever Cameras on Sep 08, 2020
Many China fever camera manufacturers have rigged algorithms dynamically...

Recent Reports

VICE Investigates Verkada's Harassing "RawVerkadawgz" on Oct 26, 2020
This month, IPVM investigated Verkada's sexism, discrimination, and cultural...
Six Flags' FDA Violating Outdoor Dahua Fever Cameras on Oct 26, 2020
As Six Flags scrambled to reopen parks amid plummeting revenues caused by the...
ISC Brasil Digital Experience 2020 Report on Oct 23, 2020
ISC Brasil 2020 rebranded itself to ISC Digital Experience and, like its...
Top Video Surveillance Service Call Problems 2020 on Oct 23, 2020
3 primary and 4 secondary issues stood out as causing the most problems when...
GDPR Impact On Temperature / Fever Screening Explained on Oct 22, 2020
What impact does GDPR have on temperature screening? Do you risk a GDPR fine...
Security And Safety Things (S&ST) Tested on Oct 22, 2020
S&ST, a Bosch spinout, is spending tens of millions of dollars aiming to...
Nokia Fever Screening Claims To "Advance Fight Against COVID-19" on Oct 22, 2020
First IBM, then briefly Clorox, and now Nokia becomes the latest Fortune 500...
Deceptive Meridian Temperature Tablets Endanger Public Safety on Oct 21, 2020
IPVM's testing of and investigation into Meridian Kiosk's temperature...
Honeywell 30 Series and Vivotek NVRs Tested on Oct 21, 2020
The NDAA ban has driven many users to look for low-cost NVRs not made by...
Ubiquiti Access Control Tested on Oct 21, 2020
Ubiquiti has become one of the most widely used wireless and switch providers...
Avigilon Aggressive Trade-In Program Takes Aim At Competitors on Oct 20, 2020
Avigilon has launched one of the most aggressive trade-in programs the video...
Mexico Video Surveillance Market Overview 2020 on Oct 20, 2020
Despite being neighbors, there are key differences between the U.S. and...
Dahua Revenue Grows But Profits Down, Cause Unclear on Oct 20, 2020
While Dahua's overall revenue was up more than 12% in Q3 2020, a significant...
Illegal Hikvision Fever Screening Touted In Australia, Government Investigating, Temperature References Deleted on Oct 20, 2020
The Australian government told IPVM that they are investigating a Hikvision...
Panasonic Presents i-PRO Cameras and Video Analytics on Oct 19, 2020
Panasonic i-PRO presented its X-Series cameras and AI video analytics at the...