Face Masks Increase Face Recognition Errors Says NIST

By Zach Segal, Published Aug 04, 2020, 10:24am EDT

COVID-19 has led to widespread facemask use, which as IPVM testing has shown drastically reduces face recognition accuracy.

IPVM Image

Now NIST (National Institute of Standards and Technology) is analyzing the effect of masks on face recognition algorithms through their Face Recognition Vendor Tests (FRVT). We will explore the results of their recently released FRVT 6A, on face recognition algorithms submitted before COVID-19 (without the expectation of being used on masked subjects) to explain the impact face masks have on face recognition algorithms and answer what the study means for users.

Executive *******

***** **** ********** ****** still *** **** **% accuracy **** **** ***** worn, **** ********** *** their ******** **** **** ~**% ******* ***** ** ~50% **** *****.

*******, ******** ********** *** greatly ******** *** **** match **** ***** **** having * ***** ****** on *** **** ********* rate, ** ***-***** *** want ** ****** ********** to ******** *** *****. Finally, ** ** ** safe, ** *** **** sense *** ***** ** lower ***** *****, ******** their ****, ***** ***** scanned, ** ******** *** nose *** ******** *** negative ****** ** * face **** ** **% or ****.

**** **** *** ******* submitting ********** ********** *** many ** ***** *** research ******** **** *** not ******* **** *** company ** ******** ******* in **********.

******:**** *** ****** ***** submitted**********, **** ** ***** will ********* ****** **+% and ******* **+% ** people ******* **** *****.

*******

*** **** ***** ******* on ***** ***-***** **** and ***** ***** ****, which ** ********** *** gives *********** **** *** not ****** *** ***-*****. They ****** ** *** change ** *** ********* of *****, ** ** algorithm ***** **** **.*% accurate ** **% **** face ***** ***** ** 10 ***** ***** ** their ******, *** ** algorithm ***** **** **% accurate ** **% ***** only ** * ***** worse. **** ** **********, so ** *** ********* in ***** ** *** true ************ **** (*** percent ** ********* ********* verifies *** ****** ** the **** ****** ** a *****), *** *** true ********* **** (*** percent ** ********* ********* labels *** ********* ****** as *********).

Study ********

**** **** ~* ******* border ******** ****** ***** with ******* ** ******* with ~* ******* **** Application ****** *** ************/ 1:1 ******** (*.*. ** the ****** ******** ***** matched *** **** *****). The **** *********** ****** were ****-******* *** ***** in *********** ******* **** a ***** **********. **** are ******* ** ***/*** 10918 *.*. **** *** are *** * *** pixels. *** ****** ******** images *** *** ****** with *** ***/*** *****-* full-frontal ***** ********* *** in **** ***** **** highly *********.

**** **** ***** ******* “masks” ** *** ****** crossing ******. **** ****** 2 ****** (*****-**** *** black), * ********** (**** and *****), *** * levels ** **** ******** (low/nose ************, ******/**** ********* covered, ****/**** ****** ** to ***-*****, ********** ******** nose).

IPVM Image

**** **** ******** *** border ******** ****** (**** different ******* **** ************ applied) **** *** **** Application ******, ******* **** of *** ** **********. NIST **** * ***** threshold, **** *** ** 1 ** ***,*** ******** images ***** ********, ** decide ** ********* *** a ***** ** ***.

****, **** *** *** test **** *********** ** every ********* *** ** time ***********, *** ******* some ********** **** ****** to ****** * **** when ***** **** ****.

**** *** ********* ******* newer ************** *** **** *******.

Results **** * **** **** **** *** ****** **** ********

******: ***** ******* *** based ** ***-***** **********.

***** ********* *** **** verification ****, ** **** as ********* *** **** an ********* ****** ** detect * ****, ****** many ********** ******** ********** error-prone. ******** ******* ** all *****, *** *** change ** ****** ********. While *********'* *** **********'* true ************ **** **** decreased ** *.* *** 2 ********** ****** ************, Samsung's **** ************ **** decreased ** **.* ********** points, ** *** ***** below **********:

IPVM Image

*** ***** ***** ***** the **** **** ** tabular **** *** * selected ****** ** ********** tested ** ****:

IPVM Image

**** ***** ********** ********* ******* ******** ** Deepglint's ***-********** **** * **** worn. *******, ** ********* has **** ****** **** it. ****, ** ********* with * ****** ******* is ***** ** *** best ********** **** * maskless ***.

Effects ** ********* **** ******

** *** *****, ***** decreased ********. ***** ***** had * ****** ****** than ***** **** (*** style).****, ***** *******, **** black ***** ****** * slightly ****** ****** **** blue (*******, **** *** not **********).

*** ******* ****** *** nose ********, ***** ** many *****, *********** ** over **** *** *** decrease ** **** ************ accuracy.

Implications *** ***-*****

***-***** **** ** ********** if ***** **** *********** solutions *** ***** ****** with ********** **** **** use. **** ** *** best ********** ********** ** unmasked ***** ****** ********* inaccurate ** ****** ********, while ***** ********** ******** high-levels ** ********, ** end-users **** ********** *** mask-use ******* ***** ********** algorithm.

Adjusting ********** ** ***** ******

******** ********** *** **** limit *** ****** ** face-masks ** ********** ******* ************ ******** **** ******* ******* on ***** ***********, ** shown ** *** ******* below.

IPVM Image

Exposing *****

** ** ** ****, it *** **** ***** for ***** ** ***** their ***** ******** ***** nose, ** **** *** greatly ******** *** **** verification ****.

***********

**** **** *** ******* submitting ********** ********** *** many ** ***** *** research ******** **** *** not ******* **** *** company ** ******** ******* in **********.***** *** ******* *** still ***********, ** ***** that ***-***** ****** *********** use *** ****** ** see *** * ***** solution **** ** ******** by ****-***.

**** ** *** ********** were ********* ** ****-******* subjects ** ******** *** mask-wearing ********. ********** *** significantly ******* *** *********** of ** ********* ** masked ********, *** ********* may **** ******** ******** updates ** ******* ****.

****, *** ***** **** digital. ***** **** ****** for ********** *********** *** was ********* *** *** volume ** *******, ** means *** ******* *** not ******* ********* *******. There *** **** ***** of ****-***** **** **** not ******, **** ** which *** **** ********* effects. ****, *** ***** or ******* ** * mask *** ****** *** photo ***** ** *** subject, ** ********** ***** or ******** *******.

*******, **** *** *** test *** ****** ** verifying ******* * ****** image.******* ****** **** ***** to *** **** *********** images *****’** ********* *** negative ******* ** ******* a **** ****.

** **** ******* ** covering ****'* ****** **** Recognition ****** **** ******* on *** ******* ** face-masks.

Comments (9)

***** *** ******* ************* missing **** *** *****. I ****** *** **** would ****.

Agree
Disagree
Informative
Unhelpful
Funny

** ** *****, *** significant ****** ** *** the **** ** ******* (fully ** *********). ** a ****** **** * mask ******** **** .... sorry ******* *** *** do ********.

** ****** **** *** face **** ** *** percentage ** ***** ****.

Agree
Disagree
Informative
Unhelpful
Funny

***** *** * ****** of ****** ***** *** their *********** ****** **** keep ** **** ****. First, ** *** ** the *********** ******* (*** a ****** *****) **** when ******* **** *** have * **** **? Are *** ******** ***** the **** ** ****** or **** **** ******* (or *** ***** ******* or ***** **** *********) due ** *** ************ of *** ******** ****? Second, ** *** **** the ************ ** * mask ********* **** ***** (race, ******)? ** *** taken ** * *** of **** *** * mix ** **** *** synthetic ******** **** ** get *** ***** *** to ********** ******. ****, the ********** ** *** threshold ** * ***** argument, ********** ** ******* is ***** ****-***** ********* where *** ************ ** a ***** ******** ******* stack-ranked ******* ** ********** (as ******* ** ** alarming ********).

Agree
Disagree
Informative
Unhelpful
Funny

** **** ** *********** to *** *** ********** submitted ** **** **** masks ** **** ******* to ********** ********* ****** COVID *** ****** ** unmasked *****. **** **** should **** ***** *******, but **** ********** **** pretty ********* ******* **********, so ***** ********* **** be **** ** ******* high ******** **** ***** on ** ****.

*** *'* *** **** what ********** **** *****, but****'* ******** ****** ** bias***** ********** ******, ***********-*****, and ******-***** **** ******* algorithms ******* *****.

****, "** ******** ********" ***** be ********** *********** ******* error ********* ************* **** watchlist ****.

Agree
Disagree
Informative
Unhelpful
Funny

**'* **** *** **** to ** ** **** but *** ********** ***** is **** ** *.*% or ** ** *** RFW ******* (****** ***** ***** ********* Industry ** **** *********) *** ******* ***** each *******.

*** * ***** **** you ** *** ******** scenario. ****'* ***** *** really *** ******** *** false *********.

******* ** **** - one ******** - *** table *** *** ****** of ******** ********* (***** Sertis ****) *** *** imposter ********* ****** **** 1/100,000 (*.*****) ** */*** (.03). ** ***'* ********* see * ***** ****** in *** ********* ****** minimum ****** ** *** FAR. *** **** * typo ** *** *****? I *** * ****** for ****** ** *** NIST ****** *** ****'** missed *** ****** **** in *****.

Agree
Disagree
Informative
Unhelpful
Funny

** ***'* ********* *** a ***** ****** ** the ********* ****** ******* impact ** *** ***.

*** ******* ** * little ***** *****, *** NIST *****'* ******* *** actual **********, **** * graph ** **** ** FMR, ** ***** *********** to *** ****** ** FMR *** *********. ***, a ***** ****** ** FMR ****** **** * lot, ***** ** *** we ***** ** ********* it ** ** ******** in *** ***** ** 3 ********** ******, ***** I ***** ** * more *********** ******.

***, *** ***** ** took ** **** ** on **** **. **'* a ****** **** ** see, *** *** **** and *** *** ***** for ***** ********* ** different ********** (*** *******).

Agree
Disagree
Informative
Unhelpful
Funny

****. ****** *** *** context.

Agree
Disagree
Informative
Unhelpful
Funny

*******. *'* **** *** enjoyed *** *******.

Agree
Disagree
Informative
Unhelpful
Funny

*'** ******* *** ******* because**** *** ****** ***** submitted**********, **** ** ***** will ********* ****** **+% and ******* **+% ** people ******* **** *****.

Agree
Disagree
Informative
Unhelpful
Funny
Read this IPVM report for free.

This article is part of IPVM's 7,092 reports and 940 tests and is only available to members. To get a one-time preview of our work, enter your work email to access the full article.

Already a member? Login here | Join now
Loading Related Reports