Deeplite AI - The Next XNOR.ai? Profile

By Mert Karakaya, Published Dec 01, 2022, 09:30am EST (Info+)

Started by AI scientists, Deeplite AI is a Canadian analytics optimization company that claims to increase the processing speed and efficiency of analytics algorithms on the edge.

IPVM Image

The closest comparable is XNOR.ai which took the market by surprise in 2019, empowering cheap Wyze cameras to beat Axis and Hikvision, shortly later terminating that deal and selling itself to Apple (and no longer available to 3rd parties). Could Deeplite deliver similar impact?

Based on an interview with the company, IPVM analyzes the company's background, positioning, and offerings.

**********

******** ** *** ******* ** * tech/SaaS ************,*** **** ******, *** * ******** *********** **.*.,*** ***** *******, ** ****. ******** ******** *** software ************ ******** *** ********* **** want ** ********** ***** ** ** make ** ****, ** ****. ********* to ********'* ************, **** **** * current ********* *** ** **** ***** projects *** *** ********* ****** *** USA, ******, ******, *** *****. ******** partners **********,********** **,********** ***,***, ********** ***.

*******

********* ** ********, ******** ** ************* *********** *******, *** ** ** ********* ****** $10 *******. ******** *** ********.**** * ********* ***** ****** ***** fundraising:

*** *** **** ** ******* ** investors ** *** ** ***** *****, kind ** ****** ********** ****.**, *** much **** **** **** ***.

****.** *** **** ** ******** ~$*** ******* ** ****.

*********

*** ******* ************ ** ****** *********,** ******* ** ******. ******** ** *** * ****** technical **** **** ** ********* *** scientists, ******* ** **** ********, ******* learning, *** **. ****** *** *********, Deeplite ****** ****** **** **% ** their ********* **** **.**.

IPVM Image

*******

******** ****** ***** ******** *** ** optimization *** * *** ******* *** the ********* ******** ** ****** ********. Their **** ********* *** ********, **********, and ***********.

******** ********* ************* ********** ** "********* ***** ************ ********", where ***** ************** *** ****** ********* algorithms **** ****** (** *********), ******** (~x3 *********), *** ********* (*** *********) are ********** **** ******* ******** **** (<1.50%).

**'* **** **** ** ****** *** the ****** ***** *******. ** ** space ** ** *****, **** *** can **** ** ********™. ** ***, where ** **** *** **** ******* with **** ** **** **** (*************** units). ** **** *** **** ** the ****** *** *** *** ******** processors. *** **** ****, ** *** greatly ****** *** **** ** *** model *** ** **** ***** **** increasing *** *****.

******** **** ** **** ******** ******** results *** ******** **** ****** ** FP32 (******** ***** ** ****), ******* further ****** *** ****** ******, *** increased ***** ** ********* ***** ********* optimizations (**** ** ***** *********). ** fact, ********** **** ** *** ****** faster ** * ***** ********* ****** for ***-****, ***-***** *****.

**** *** **** * ***** **** FP32, *** **** *** ******** ** to ******* *****, ** *** ***** precision, ***. *** ** *******. ********** is *** *** ******* ****** *** ARM ****** * *** ** ********* to *** ***. *** **** ** very **** ******* ** *** **** technical **** ** *** ** ******** these *****.

******** ********* *********** ** "*** ****** models ** ******* *** *** *********, and ** ******* ***** ** *** customers."

*******, ******** ********* ********'* *** ********* annotation ****:

** * ******** *** **** ***** open ****** **** *** ****'** ****** certain ******** **** ******** ** ******* sites, **** ** ***** ** **, basically **** **** ****** **** **** site, **** **** ** *** ***** and *** * ***** ***** ** auto ***** **** ****. **** **** those ********* ****** *** ******* * small ***** ** *** **** ******, and ****** ** ** **** **** where ***** *** ******** *** *** so **** ** **** ******* **** accuracy.

******** ******** *******, ********** **** *** Onyx, *** **** ** ****** ** C++.

*******

******** ***** **** *** ****** ******* after *****'* *********** ** ****. *******, we *** *** **********: (*) ******** to * ***** ***, **** ********* in **** ******** *** ******* ***** with ********** ********* *** ***** **** powerful ******** *** (*) **** ***** want ** ** ** ********** *** not ** ********* ** *** ******* (especially *** ****** ****). *******, *** potential ********* ******** ******* ***** ******* analytics ** ***** **** ******** ** more ******** ********* **** ************* ***** otherwise ***** ** *****.

**** ** ******* ********'* *********** *** comparing ** ** ***-***-***** ******** ** the **********.

Comments (0)

Login to read this IPVM report.
Why do I need to log in?
IPVM conducts reporting, tutorials and software funded by subscriber's payments enabling us to offer the most independent, accurate and in-depth information.
Loading Related Reports