*******
***** ** * **** of *******, ******'* ****** detection ********* **** ************* improved **** *** ******** tests, ********** ********* ********** subjects *** ** **********/** scenes. ****** **** *** not ***** ***** ** common ******* ** ***** alerts, **** ** ******* foliage *** ******* ** lights ******* ** *** off.
*******, ******'* ********* ********** classified **** ***** *** small ******* ** *** scene ** ***** (**** common **** ****** *** camera **** **** *** legs *******) *** ***** rain ********* ***** ****** in *** *****. ******** parked ** *** ***** were **** ********* ******* and ***** ** *** analytics ***.
*******, ******'* ******* ******** ~15 *** *** ******** person *********, ****** **** many *** ********** ********* (typically ** *** ** lower), *** ***** **** Verkada's ****** *********, ***** required ~** ***.
Improved *********** ******** ** ****
** *** **** ******* , ****** ****** ********* analytics ******* ****** ********* if **** ** ***** body *** **********, **** as ******* ****** * workbench, *****. *** ********* have ******** *** *** detect ****** ** *** lower **** ** ***** body ** *** *******.
************, ****** **** ********** missed **** ******* ******* a ****/** *****. ****** are *** ********** ******** with ** ************ ***** used.
People ******** ******** *** *******
** *** *****, ****** were ******** ******** *** classified ***** ******** ** running ******* ******* *** scene.
No ***** ****** ** ****** ****** *******
****** ****** ******* ** false ****** **** *******, such ** ***** ***** changes.
************, ******* ****** ******* the ***** **** ******* and *** ******* **.
*******, ****** ***** ****** on *** *** ** other ***** **** ******* completely.
Most ******* ******* ** ***** ****** *******
****** ******* ******* ** false ****** **** ** swaying ******* **** *******.
****** ******* ** *** ground ******** ** ******* were **** *******.
False *************** ** ******* ** *** *****
****** ******* ***** ******* in *** ***** **** classified ** ******, **** as **** **** **** below.
************, ***** ******* **** as *** *** ***** were **** ********** ** human.
****** ******** ******** ** false ***************:
***, ** **** **** this **** ** ***** before. *************, ** ** not ******** ** ********* all ***** **********, ********** when ******* ** **** time ** *** ******, not ** * ****** or ** ** *** cloud. *** ******* ******** available ** * ****** constrains *** ******* *** DNN ***** *** **, and **** *** **** to ***** ********** ** some *********. **** **** of ***** ********* ** more ****** **** *** model *** **** **** to **** **** *.*., low ***** **********. ** try ** ***** ***** out ** *** ***** as **** *** ******** to **.
False ****** ************** ** ***** ****
* ****** ****** ** false ****** *** **** analytics, ***** **** *** classified ** ***** ** Meraki.
~15 *** ****** *** ****** *********
** *** *****, ~** PPF *** ****** *** person *********, ****** **** many ***** ********* (*.*.******** ,***** ,****** ) ***** ********* ****** ~10 *** ** *****. However, ** *** ** lower **** *******, ***** required ~** *** *** detection.
Stationary ******** ******* ** *********
****** ******** **** ********* counted ** * ******* that ******* *** ***** and ***** ** *** analytics *** *** *** camera, **** ****** ******** at ***** **** *** bounding *** *** ******* from *** ******* *** then ****** **** **.
Default **** ********* ***** ** ************
****** *** *** ********* feedback ** *** ****** detection ******:
** *** *** **** model ** *** *** cameras, *** ** ****** vehicle ********* *** ******* cameras. ***** *** ********* neural ******** ********* *** these *** ** ******** from *** ** ** through ** *** ****. The ************ ***** *** a ********* ******* ************ and ** ******* ** a ********* **** ***. It *** ******* ****** than *** **** ***** in **** *********, *** worse ** ******. ***** is **** * ***** specifically *** *** **** fisheye ****** **** ****** for **** ********* ******* of **** ********* **** the ****** ** ** a ****'* *** *************.
** ***** ****** ******* that ******** *** ****** did *** *** *** of *** ***** ****** and ********* ** ******** animals ** ******.
************, *** ************ ****** detection ********** *** ******* cone ** *** ***** as * ****** ******** times.
*****
****** ****** ********* ********* are ******* ** ******* on *** ****** ******* and *** ** ****** in ******** *****.
*** **** *** **** click ** *** ******/******* detections ** *** ********* tab ** **** ******* of *** **************.
*******
****** ****** ********* ********* are ******** **** * Meraki ******* ** ** additional ****.
Versions ****
*** ********* ******** **** used ****** *******.
Comments (0)