Gender Video Analytics Shootout

By Rob Kilpatrick, Published Dec 14, 2020, 08:09am EST

Using video analytics for gender identification is expanding but how well does it really work? And what personal features are gender analytics effectively using to make their identification?

IPVM Image

We tested gender analytics for over two weeks with five manufacturers' cameras:

Inside, we examine:

  • What physical features most impact gender classification?
  • What was the accuracy percentage?
  • How does hairstyle affect classification?
  • Does clothing style impact classification?
  • Does body type affect classification?
  • How do person and face detection impact accuracy?
  • How does PPF impact classification?

*******

***** ** *** *****, all ******* *** *** most ******* ****** **** length **** *********** ******, making ** ** *** the ******* ********* ** whether ******* **** ** classified ** **** ** female. *******, ***** ********* were ****** *************** *** routinely **** ******** **** an ******** ***** ***** not.

**********, **** **** *** the ***** ******, **** subjects ** ******* ***** and ******* ********** ** male ** ****** ***** on ***** *******, **** no ***** ***** ***** on **** ****.

***** ******* ****** ** manufacturer:

  • ********'* ** ******* *** Appearance ****** **** ******* weighted ****, *********** ******** with **** **** ** female *** ***** **** as **** ** **** rates. ***** ******* **** as **** ****, ****** features, *** ******** ***** were *********** *******.
  • ***** *** ****** ********* similarly, **** ******* ********* hair, *** **** ******** style, *********** ******** ** skirts ** ****** **** often. ************, **** * face *** ********, ****** features **** **** ******* considered.
  • *********'* ****-**** **** *** camera **** ********* ****** analysis **** * **** was ********, ****** ****** which ********* ******** ** person *********, **** **** subjects **** ****** ****. Because ** *** **** PPF ******** *** *** camera ** ******* * face (~*** *** ** higher), ** *** **** likely ** ********* ******** gender.
  • ******* *********** **** ********** hair ** *** ***** and ******* ******** *****, facial ********, **** ****, etc. ******* *** **** the **** ************ ***** sometimes *** *** ******** gender, ****** ********* ******** as * ****** ******* of **** ** ******.

Accuracy ********

******** ** ****** ** be ***** **** (**%+) in **** ************, ** men ********* **** ******* hair **** *****, ***, expect ******** *** ****** who ** *** *** this ********** ***, ** applications ***** *** ********** does *** ** **, accuracy ** ****** ** be ***** ****.

Performance ********

***** ** ** ******** of *** *********** ** all ** *** ****** recognition *********.

IPVM Image

Avigilon *** ******* ********* **** ******

**** ****** *** **** heavily ******** *** *************** in *** ******* ** all ************* ** ********* (discussed *****).

******* *** ******** ******** hair *** ********. ** a ****** *** ******** with **** **** **** were **** ****** ********** as * *****, ********** of ***** *******, **** as ******* ******* ****** hair ** **** *****, shown *****.

IPVM Image

*********, ******** ********** ****** effectively ******* ***** ******* and ********** ******** ******* weighted ** **** ******.

IPVM Image

Dahua / ****** ****** **** ******* ** ****** *********

****** ****** ******, ***** and ****** ******** ****** on **** ****** ********* and **** *********, **** face ********* **** ********. When ***** ****** *********, hair ** **** ******** weighted.

*** *******, ***** ******* weighted ****** ** **** length **** ***** ****** detection, ***** ***** ********** as ****** ** **** was **** *** **** versa.

IPVM Image

****** **** ******* ******** people ** **** ****** when ***** ****** *********, resulting ** ******* ***** classified ** ***** ** hair *** *****.

IPVM Image

Face ********* **** ******** ****** *********** **** ******

**** ***** **** ********, Dahua *** ****** ****** classification ****** **** **** accurate.

*** *******, *****, ****** considers *** **** **** long **** ** ** a **** **** * face ** ******** *** a ****** **** **** a ****** ** ********.

IPVM Image

*********, ***** ********** **** person ** * **** when * **** ** detected *** * ****** when *** **** ** detected.

IPVM Image

Body **** ******** **** **** **** ** *** *************

**** *** ****** **** types **** ******** **** and *********** **** **** short ** **** **** on * ******. ******, Dahua, *******, *** ******** would ***** ******** ******** as **** ** **** was ***** ** **** back, **** **** ***** female *******.

IPVM Image

Gender *********** **** ******** ** ***** ***

******* ****** *** ******** both ****** ****** ** long ****** / *** PPF ******, ****** ************** was ********** ** ****** distances ***** ******* ******** cannot ** *********. *** example, *** ***** ***** below *** ********** ********** as ****** ****** ** the ******, *** **** at * ********, ******* visible **** ****.

IPVM Image

***** ********* ***** ** get * ****** *** when ********* ****** *** still ***** *** ** guess ****** ** ***** PPFs, ********* ** ***** classifications.

IPVM Image

Skirts ******* ******** ** ****** *** *****

****** *******, ** * person *** ******** ******* a *****, ***** ***** automatically ******** **** ** a ******, ***** *****. Other ************* *********** *********** clothing *****.

IPVM Image

************, ****** ******** ****** more **** ****, ** a ********* ***** * female **** ***** **** was ******** **** ****** it ***** ********* ** classified ** ****, **** a ***** *** ****, the ******* *** ****** classified ** ******.

IPVM Image

Verkada **** ** **************

******* *** *** ******** gender ** *** ****** that **** ********. ** some *****, * ****** was ******** *** ***** to *******'* **** ** people ******** *** *** given * ******. *** other ********* ********** ****** whenever * ****** ** face *** ********.

IPVM Image

Hikvision **** *** / ******* ***** ********

********* ****** *********** *** the **** ******** ** our ******* *** *** also *** **** ***********, only ******** ***** ** be ******** **** ** and ** **** *** (~90+).

IPVM Image

Hikvision **** ***** ******

********* *** *** ****** hair ******* ******** ** other *********. **** ** long **** *** ******* with *** *******'* ****, they **** ********** ********** as **** ***** ****** would ******** **** ** female.

IPVM Image

Versions ****

*** ********* ******** **** used ****** *******.

  • ******** *.*-***-***-**: *.**.*.**(*****)
  • ******** ******* ******: *.**.*.**
  • ***** ***-*********-***: **.***.*******.*.*, ***** Date: ****-**-**
  • ****** ***-******: *.**.**
  • ********* ***-**********-*: **.*.** ***** 180316
  • ******* *****: *** *****

Comments (30)

**, **** ** *** think ***** *** **** that ******* ** *** classifying ****** *********? *** underlying ******** **: ** video ********* ***** ****** their ****** ** ******* a ***** **** **** the **** ** *********** (with **** ***** ** error), ** ******* ** not ******** *** ********* that ** *********?

******.

Agree
Disagree
Informative
Unhelpful
Funny

*****, ****** *** **** first ******* *** * good ********. ** ***** on **** ********, **** are ****** ********* ** use ****** ********* ***? Is ** ********* ************? Or ** ** "**** me *** ******* *" or?

* *** ** **** seems ** ** **** entertainment (*.*., *********** ** demo) **** ****** ***. To ** *****, * am *** ******** **** some ***** **** *** of ****** *********** *** I ******* **** ** not.

Agree: 4
Disagree
Informative
Unhelpful
Funny

* ***** **** *** classifying ****** *** *** time ***** ** ****, but ** ***** ** better ** ***** *** a ******** "*******" ********, instead ** ****** *** classifying. ** ** ****** now, *** *** ****** for **** ** ******, but ** *** **** to *** ***-********** ****** detections *** *** **** see **** ** ******* all ******* ***, ** you're ******* ** ******, male, *** ************ *** at ****.

Agree: 5
Disagree
Informative
Unhelpful
Funny

****** *****. * *****, the ****** ****** ******* data **** **** ********** and **** **'* *********, just *** **. **** like * ******* ** an ***** ***** ** sometimes **** ** ******* information **** * **** level ** ******** *** sometimes ***** ***. **** bad **** ** ***** than ** ****. ******** the ***** ** ****** specifically *** "*******" **** becomes ********* **** **** approach.

Agree
Disagree
Informative
Unhelpful
Funny

** **** **** ***** an "************" ******** *** some **** *******, **** as ******, *******, **** covering.

** *** **** ********* used ** ****** ******* of ******, *** **** being **** *** ***** with * ****** ** specific ** ******** (****, with *******, **** *****, moving ** * *********), and **** **** *** some ** *** ********** depending ** **** *** are **** ** *** from * ***** *****.

*** ***** ****, ** course, ** **** ** have ****** ****** ** make * ********** ******** on ***** *******, *** the ******* **** ***** points *** ** **** many ***** *** ****** make * ******* ********, so ** *** ******* "Undetermined" ** * *** to ********** **** *** product ***** ** ** unable ** **** * hard ********. **** *** be *** ** *** resolution, ******* *** **** lighting, **********, ** ***** factors.

IPVM Image

IPVM Image

**** **** ** **** a ****** ******** *** both **** *** ******, where ****** ***** **** general ********** ******* **** consideration (********* ****).

** ** *******, *** can *** ** **** scene *** ******* ********** my **** ** ************ gender, *** ** **** to *** *** ********** and *****, *** **** using * ****** ******, accurately ********** ** ** Male (****** ***-****** ***** here).

IPVM Image

*******, * ***** **** gender ************** ** *** of *** ***** ***** we (*** ******** ** well ** ******) ***** likely *** * *** of *********** ** *** next ******* *****.

Agree
Disagree
Informative
Unhelpful
Funny

********** ********** ** ** Male

**** **** ********** **********? :)

Agree
Disagree
Informative
Unhelpful
Funny: 2

** *** **%, *** then * *** **** testing ***** ******* * Pumpkin ***** ***** *** it **** **** ** 51%.

Agree
Disagree
Informative
Unhelpful
Funny: 24

***** *** ** ****** purchases

Agree
Disagree
Informative: 1
Unhelpful
Funny

********* ********** *******!

Agree: 1
Disagree
Informative
Unhelpful
Funny

************************** ***. ****. *** I **** *** * few ******* ***** ****** myself ** * ****.

Agree
Disagree
Informative: 1
Unhelpful
Funny

* ***** **** **** is ********* ** ******* for ** *** ****. I ***** ****** ************* have * ******** *******/******* than ** **** ** question **’* ********. * know ***** ****** ** any **** ** ****** contributes ** * ******* that ***** ** ****** any ****** ** **** system(s). * ***** ******* and ****** ** **** ilk *** **** ****** providing **** ********** ******** versus **** ******* ** their *********. ****** ********* seem **** * ***** category. * ***’* ****** what ***** ** *** get **** ** ******** classifying ******.

Agree
Disagree
Informative
Unhelpful
Funny

*** * ** ******* for * ****** **** a *** ***** *** blue *****. ***** **** to ****** *** ******* for ***** ************ *** be ****** *** *** sure *** **** ****** are ***** **** *******. This ** ********* **** can ** **** **** Avigilon's ********** ******.

Agree: 1
Disagree
Informative
Unhelpful
Funny

* ***** ** *** all ***** **** * system **** ***% ******** would ** *** ****. But ***** **** **** will ******** ***** ****** (for * *** ** reasons), *** ******** ** to **** **** ** the **** **** ******. It *****'* **** *** system ******* ** ** solves **** ******* **% of *** ****. ******** search ** * ****** usage ** ****** *********.

Agree
Disagree
Informative
Unhelpful
Funny

** *****'* **** *** system ******* ** ** solves **** ******* **% of *** ****.

*****, ** ***** '****' 90% ** *** ****, as **** ** **** everyone *** ******-************* ********.

IPVM Image

****: ** ***, * think **** ***** ***** people *** ***** ****************. It's *** ***** *** computers ** **** ********, it's ******* ** *** viewer ***** ** ** and ****** **'* ********* wrong *** ******** *********.

Agree: 2
Disagree
Informative
Unhelpful
Funny

" * ***’* ****** what ***** ** *** get **** ** ******** classifying ******."

** **** ****** ** a ****** ******** ****** field ** **** ***** be ****** *** ********* strategy *******, ** **** countries ** ****** *** mixity ******** *** ******** reasons, ** ** ******* if * *** ******* to ******* ** * women **** ****...

Agree
Disagree
Informative
Unhelpful
Funny

** **** ******* ****** with **** * *** years ***. ** ******** misidentification *** **** *** system ********** *** ***** Leader (* **** ** his *** **'*) ** a ******. ** *** some ******* *** ** appears **** *** ********* gave **** ***** ****** to *** ****** *****. He's **** **** **** our ******* *** ***** 2 *****, *** * still **** ******* ***** it.

Agree
Disagree
Informative
Unhelpful
Funny: 5

*** *** **** ** post ***** ** **** topic *** *** ******** involved, ** *'* *** even ***** ** ** it.

Agree: 3
Disagree
Informative: 1
Unhelpful
Funny: 3

*** ** *****. ** one *** **** ** tell ** **** ******** to ***.

Agree
Disagree
Informative
Unhelpful
Funny: 1

* ***'* ********** *** there ** * **** to ******** ** ***. I **** **** ******* manufacturers *** * **** while **** *** *************** cheapen *** ******* ********* package **** **** ** not ****. ***** ** works **** ********** * feel **** ****** *************** are **** * "****, why *** **** ***" feature **** *** *** for, *** ****, *** does **** **** **** good.

*** *******, * *** years **** ** *** a ***** ** ** otherwise ********** ****** *********** platform **** *** ******** rejected. *** ****** *** not ******* *** ****** recognition ******** *** ******. The **** ** ******* identification *** **** **** for ****. *** ******* reason ** **** * single **** ******* **** member *** ***** ********** as *'* ***** **** this ****** *** * 5'11" ****. **** ****** was *** *** **** cause. **** ***************** ****** a ******* **** ** the ***** ** *** the ****** ***** ***** of *** *******. ***** this *** *** *** sole ****** ***** ************* it *** ********** *** wrong ******. *** *** and ****** ************** **** has ***** **** ******* from *** ****** *********** analytics *******.

Agree: 1
Disagree
Informative: 3
Unhelpful
Funny

* ***'* ********** *** there ** * **** to ******** ** ***

*** *** **** *** cases * **** **** are *** ****-***** ****** and *** ****** ********* applications (***** *** **** primarily ****-*****).

***, ** *** ** the ***** **** ** the **** ***** ** analytics, ***** ******* **** be **** ** ******* more ******* ***** ********** attributes ** ** ******, and **** ***** ** figure *** **** ******* of ** ******* *****, not **** **** ***** are ******** ******* ** the *****.

* ***** *** **** a ****** ***** ****** based ** * ****** for ****** ***************, ** I ***** ** ** unlikely ** **** ******** enough **** ** **** to ******* * ******** focused ** **** *** specific *** ****. *** when *********** *********, ** can ******* ***** ************* for *** ****.

Agree: 1
Disagree
Informative: 1
Unhelpful
Funny

****** *** *********** ** the ******* ** *** wacko ****** *** ****** after ***. *** *** test * *****?

Agree
Disagree
Informative
Unhelpful: 8
Funny: 2

***** **** ******* ** rather ***********, * ** think ***** ******** ******** to "**********" **** ****** identification ***** ** * better **** **********.

"**** **** ******* * red ***** *** **** jeans" ** ********* **** can ** ******** **** a ******* ******** *** less **** **** "* woman ***** ** ******."

Agree: 4
Disagree
Informative: 3
Unhelpful
Funny

* ***** ***** ** wallet

* ******** ****** ********?

Agree
Disagree
Informative
Unhelpful
Funny: 8

*****, ** *** ***********. Should **** ******* ***** before ******* ****.

Agree
Disagree: 3
Informative
Unhelpful
Funny

πŸ˜‚*** *****. ***** ** one **** *** **, i ****. *** **** comes ** **** ** that ******* ***** ** the ***/*** ** ******** throwing * *** *********** as β€œ**’**” πŸ˜‚πŸ˜‚πŸ˜‚πŸ˜‚

***** ** ** ******** to *** **** **’** thru *** ********* ** see **** ** **********? πŸ˜‚

Agree
Disagree
Informative
Unhelpful: 3
Funny: 1

*** ****, ** *** system **** ** ***** (in ***** ****) **** will ***

Agree
Disagree
Informative
Unhelpful: 2
Funny

*** ******* *** *** mentioned *** *** ****** for **** ***** ********* based ** *** ******* in ***** ** *** monitor.

** *********** ***, ******, race *** ***** ******** β€œstyle” **********, *** ***** display ******* *** ** thousands ** ********** ********* messages.

** ** **** ** would ********* ********** ***********, golf ***** *** ******* pads.

** ****** ** *** person ** *** **** available? ****** *** * friend.

Agree
Disagree
Informative: 2
Unhelpful
Funny

*** ********* ******* ***/****** as * ***** ** the *********** ****** *******. With * ****** *********** function **** *********** ******, the ******* ***/****** ****** only **** ** ** good ****** ** ******** a ****** *** *** a ********** *** ** images **** ***** ** further ****** *** ******. Once ** ***** ** selected **** ******* ****** results *** ****** ******* converges. *** ****** ** success ** ******** ** not ** **** ******* accuracy *** ** *** quickly ** ******** *** find **** **** *** looking ***. *** *** same ******, ****** ******* are **** **** ******** in ** ********** ****** that ** ********* **** live ** ******** *****. As *** ********** ******** such ** ******* ******** search ** *********** ********, more ******** ****** ****** will ** ****.

Agree: 1
Disagree
Informative
Unhelpful
Funny

** *** ******** * search *** ** ****** key *********, ******** *** search ********* ***’* **** it **** **** ** has ******* *******.

* ****** *** ******, red *****, ***** *****. 20% ** *** ***** in *** ***** *** missed. **** ******* ******** it ****?

Agree
Disagree: 1
Informative
Unhelpful
Funny

*****. ****** *********** ********** either **** ******* *** mathematics ************ ** *** NOT ****** *********** **********. That ******!

Agree
Disagree
Informative
Unhelpful
Funny
Read this IPVM report for free.

This article is part of IPVM's 7,334 reports and 972 tests and is only available to subscribers. To get a one-time preview of our work, enter your work email to access the full article.

Already a subscriber? Login here | Join now
Loading Related Reports