Prayas *********
****** *********, *** ****** *******, *** ******** to ***** * ****** ********* ********. The ******* *** **** ** ************** ****** **** ******* *****. ****** ***** ******* ** ***** active, *** ******* ******* ** * different *********** *** ****** ***** ****** analytics ******** ** **** ****.
**-******* ******* ********** [**** ** ****** *********] ********* *** ******* *** *** ******* failed, ** * **** ******** *** informative **** ****.
Lessons *******
******* ****** **** ** *** **** post *** ************ ******** ** ******* challenges ** ****** *********:
** *** ****, ***** ******* ** the ****, ******* *** ** ****** out **** ** ** *** **** implement *** ********. **** **** *** analytics ******* **** ******, *** ********* barriers ** ********.
**** ** ******* *** ** *** largest ********** *** ****** ********* ********. While **** *** ******* ******* ** hotspots ****** *** *****, ** ***/****** profile ** ********, *** ******** ***** needs ** ****** **** ** ** with **** ****, ***** ** *** always *******. *******, ** *** ** difficult *** *** ********* ******** ** offer ***********, ** ********* ***** ** retailers **** ****** ********* ****** ******* and ***** *******. *** ******-**** ***** browsing ** ****** *** ** ******* a **** **** ** * *** one? ** **, **** ** *** do ** ********* ** ********** ****?
**** ******* **** ********* **********-***** *********, where *** ****** **** *** ********* is ******* **** *****-***: ********* ** the ****** ** *** ********** ** be ** *** ********, *** ** so, ******* ** *** **** ** leave *** ******** *** ******, ******, etc.
******* **** *** ******** ***** *** that ****** ****’* ****** *** **** like **** *******, *** ** ***** was ** ********* **********. ***** ********* weren’t **** ** ***** **** ****, it **** **** * *** ** figure *** *** ** *** **. If **** ******’* ****** ** ***, the **** *** *******.
****** ********* ********* *** ***** ********* data **** ********* *** *** ********** have, ***** *** ******** ***** ********, but ** *** **** **** ****** the ******* **** *** ***** ***** above: ********* ** *** **** ********* and ******* ** ***** ** *** on **** ****. ** *** **** can *** ** **** ** **** way **** ********* *******, ** ***** value.
*** ********, *** ** *** ***** things ** ******’** **** ***** **** been ** **** ** ** ****** in *** ***** ** ******** ******* and *** ****** ************. ** *****’** talked ** **** ****** ***** *** plans ** *** *** *** ***** from ***** *******, *** *********** ** they **** ********* ** ***. ******* we **** ******** *** ******* *** a **** ****, *********** ******* ******* hopeful **** ** ***** **** *** hopeless **** ** ******’*.
*** ******** ** ****** ****** ******** industry *********, ** **** *********** **** the ******** ********. ***** ***** *** based ** ******* ***** **** ******** surveillance *******, *** **** ***** *****-***** analysis ** *** ***** ** ******** their ****/*******. *******, **** **** *** even ********* ** *** ******** ** retrieve *** ***** **** ********, *** were ********* ******* **** ***** *** a **** ****** ** ******* ********, often **** ****** ***'* *** **********, which **** ** *********** *****.
******* ********* ******** **** ************** ******. In *** ****, ** *** ******* with *** ****** ******* *** ****** stores **** ********* **** *** * 1 **** ********** ** ***** ***** POS ******.
******** ********* *** **** * ******** factor *** **** *****-***** ***** ******** in *** ********** *****. ****** **** of ********* ********* *** ** ******** better ** **** **** **** **** first ******** ** ****, ** ***** remains * ******** ****** *** ***** companies ** ***** *******, ** ******* customers **** **** **** * *** cameras *** ********.
** **** ********** ****** ** ***** signs ** ********. ** ****** ******* that ** **** **** ***** ** sealing *** ****... ***** **** ***** * was ******* ******* ****** **** **’** very ***** ** * ******* ****** contract **** ****. ***** ***** ***** — ***** ** ********!
**** ** * ******* ***** **** by ******** ** *** ******, ********* customers *** ** ********* *** "***", and ****** ** ***** ********, *** they **** *** ***** *** ******* to **** * **** "**" ******. This ******* ** ********* ************ ******** that **** ***** *****, *** ******** resources ** ******** **** *************, **** though *** *****-** ******** ***** ******* and ************. *******, ****** ********* ** particular **** * ********** *** ***** extremely ****-*********, ********* ** ***** ***** on ********** **** **** *** ******** improve *****, ****** ******, ** ********* have * ****** ******-**** ******.
Deserve ******* *** ********* *** *********
****** ********* *******, *** ******* **** to **** **** ********* **** ** uncommon, *** **** ** *** ******** industry, *** ** **** ****** ** well. ******* ********** ******** ******* *** recognition *** ******* **** ** **** on *** ****** ********* ****. ****** Analytics ******* **** "*********", ***** **** pivoted **** *********** [**** ** ****** *********] ** August ****, ***** ** ***** ********* active (****** *** ******* ** ** with ******** ** ****** *********).
Retail ********* *********** ******
****** ** ********* *** *** **** startup ** **** ****** ********* ** be * *********** ******. ***** ******* ******** ** **** ** * ****** analytics ******** ** ***** ******* ** Silicon ******, *** *** ***** ******* ******* to * *******-***** ******** ********* *******, marketing ** ***** *********, **** ** healthcare, *** ******** ******** **** *********** search, ** **** ** ******* ***** of ********* *** ******* ******** ******* purposes. ***********, * ****** ********* ********** for **** *****, *** **** ~$* million ** *********** ******** ** ****, *** ** *** ****** **** their ******** **** ******* ***, **** depend ******* ** **** ****** ****** position ** ****** ** *******. ** 2015, ****** ********* *********** ********* **** ** Envysion [**** ** ****** *********], * ********** small ***** ********.
**** ****** ********* ********* **** ******* retail ********* ************ **********, ******* ********** that ******** ******, *** *********** ** pay *** *********, ** *** ******** to ******* **** ** ********* ********** or *********-******** ****** ***********.
Comments (9)
Undisclosed #1
Being 'extremely cost-conscious' (because of the thin margins/high competition in retail) tends to also make these customers 'extremely vaporware-conscious' as well.
I love how the dude insinuates that retail customers are apparently just too dumb to figure out the benefit/value of the data produced by his product:
Say what? Whose fault is it that the customer doesn't understand the value of your product again? The customers?
yeah... sure.
Create New Topic
Undisclosed #2
Putting the “cart” before the horse...
Create New Topic
Marty Calhoun
Openly admitting failure, and knowing when to move onto something else is uncommon, not just in the security industry, but in most others as well. Pranshu Maheshwari deserves respect and recognition for knowing when to move on and pursue something else
Very well said....
Create New Topic
Undisclosed #3
Many analytics companies fail to realize they are data rich and information poor. Video content analytics is not about video, it is about the content.
Create New Topic
Undisclosed Manufacturer #4
I could write a book about this subject, (and maybe I will when I retire), but the single line from the blog that should be etched in stone was:
When we started working on the retail analytics idea, we didn’t even really have conversations with customers —
The "if we build it they will come" mantra may play well in Silicon Valley but it doesn't in Wisconsin. If you've asked no questions, then how could you expect to deliver relevant answers?
Create New Topic