Aspect Ratio 16:9 vs 4:3 Shootout

Author: Ethan Ace, Published on May 03, 2012

In the past few years, as HD swept into living rooms, people have moved from watching video on 4:3 aspect ratios to the wider 16:9 format. This has carried over into surveillance where the wide screen HD format has become very popular. Indeed, in a recent reader's survey asking to choose between 4:3 and 16:9, the wide format won in a landslide:

The premise behind 16:9 preference is that most scenes in surveillance are typically wide but not tall (i.e. there are no 10 foot tall people or 30 foot tall trucks, etc.)

Unfortunately, in practice, this assumption, while true, detracts from real world performance.

Our Tests

This surprised us as well but our series of tests, in a variety of real world scenes, showed over and over again clear practical benefits of 'full' 4:3 aspect ratio. These scenes include:

  • A small indoor conference room
  • An indoor lobby
  • An outdoor intersection - with both wide and telephoto FoVs
  • An outdoor parking lot - with both wide and telephoto FoVs

These sample images were produced by the same camera, in the same location, switching aspect ratio from 4:3 (1.3 MP - 1280 x 1024) to 16:9 (720p - 1280 x 720).

Key Factors

There are three key factors which affect which aspect ratio should be used:

Taller Not Wider: The term 'wide' is a misnomer for surveillance applications. For any given sensor, the FoV width for 4:3 and 16:9 are exactly the same. The only thing that differs is the height. For example, with a 1.3MP sensor, the 4:3 aspect ratio is typically 1280 x 1024 while the 16:9 version is 1280 x 720. The total pixels wide stays constant. In the 16:9 you simply lose 304 rows of pixels. Ultimately, this is the core of the problem.

What may cause confusion is that in TV, unlike surveillance, the wide screen aspect ratio actually adds more content to the left and right side. By contrast, in surveillance, you simply lose on the top and bottom. This image demonstrates how the two applications differ:

Get Video Surveillance News In Your Inbox
Get Video Surveillance News In Your Inbox

Notice that the wide TV shot shows more details on the left and right sides while the wide CCTV shot actually loses details on the bottom.

Downtilt: If cameras are installed with anything aside from slight downtilt, 4:3 better fits the field of view. This is because while 16:9 may remove potentially wasted ceiling or sky from the image, it removes portions of the scene closer to the camera, where pixel density is highest. Aiming the camera down further to compensate quickly begins to remove wanted areas from the scene, and may cut off subjects' heads, or simply not provide a deep enough FOV.

Telephoto zoom: In wide fields of view, objects at the periphery, such as trees, shrubs, walls, and other objects, are often irrelevant, adding nothing to the scene. However, when using telephoto lenses, the field of view is more likely to contain relevant information. When FOVs are only 5-10' wide, capturing an extra foot of depth provides proportionately more information than in a wide field of view.

Both of these factors, and their effects, are demonstrated in application images below.

Indoor Conference Room

In this example, with a camera located at ceiling height, nearly two full seats at the table are lost when switching to 16:9, without the benefit of removed wasted information from the image. Subjects' actions while seated in these two seats would likely be difficult or impossible to determine, though identification would be possible as they circled on either side of the table to sit down.

Indoor Lobby

This lobby example demonstrates what gain the added depth of 4:3 provides:

In the 4:3 example, the entry doors are covered, as well the walkway near the camera. Using 16:9 aspect ratio, one of the other is sacrificed. Aiming the camera down to better capture the near area moves the camera too low to capture many subjects' faces as they enter. Aiming it higher to capture faces, the area closest to the camera, with the best chance of recognition, is sacrificed.

Outdoor Intersection

This scene, a wide angle view of the intersection, is one example where 4:3 provides limited benefit over 16:9:


The 16:9 image contains less wasted space, cutting off landscaping and skyline which the 4:3 image does not. Landscaping especially may create extra motion in the scene, and increase bandwidth and storage needs.

However, when zooming in, 16:9 becomes problematic. In this case, 16:9 is only able to capture the far part of the intersection, or the near, while 4:3 is able to capture the entire view with the same resolution:

Outdoor Parking Lot

The advantages and disadvantages of 4:3 and 16:9 are prominent in this outdoor parking lot scene, as well. Using a telephoto lens, the 16:9 image loses an entire lane of traffic in this example:

However, when using a wide angle lens, only part of a parking space is lost:

Unlike the intersection example, however, 16:9 does not remove any completely irrelevant information. The portion of the parking space lost is relevant to the scene, however small it may be.

Corridor Format

We did a seperate test on the mode that flips 16:9 to 9:16.  See: Corridor Mode Tested

Image Cropping/Privacy Masking

Though 4:3 likely fits most scenes better, there still may be a desire to remove some unwanted portion of the scene. This is possible using two camera features:

  • Image cropping: Image cropping allows users to select a custom portion of the camera's FOV which is viewed and recorded, removing the rest. For example, users may remove drop ceiling from interior cameras or blank sky from exterior views, reducing bandwidth and storage. Similar to corridor format, custom crop views may leave blank space to the sides of video, as they are non-standard aspect ratios. Additionally, not all manufacturers support image cropping, even among majors, and those that do may not support it across all cameras in the line.
  • Privacy masking: Privacy masking may be used to remove irregularly shaped areas from the field of view, along edges (similar to cropping), as well as within the video itself. These masks reduce bandwidth and storage proportionately, as no video is sent for the masked portion of the FOV. This may be useful for masking out objects with regular movement irrelevant to the scene, such as the landscaping in our intersection example above. Users may see our Reducing Bandwidth Through Privacy Masks overview for more detail on this subject.

Camera Support

While many cameras will market their resolution as wide screen HD (either 720p or 1080p), most of them support the 'full' 4:3 aspect ratio as well. For instance a 1080p 'camera' that streams at 1920 x 1080 will often also support 1920 x 1440 (a 4:3 aspect ratio) stream.

Carefully check that cameras marketed as HD also support the 'full' 4:3 aspect ratio. Cameras that do not should be treated as, at least, a minor deficiency.

Test Yourself

2 reports cite this report:

3MP and 5MP Cameras Going Widescreen on Jan 04, 2018
For years, 3MP and 5MP cameras used the traditional 4:3 aspect ratio. Now, in an emerging trend, newer generation 3MP and 5MP cameras use 16:9...
Resolution Tutorial on Dec 28, 2017
Understanding video surveillance resolution can be surprisingly difficult and complex. While the word 'resolution' seems self-explanatory, its use...
Comments : PRO Members only. Login. or Join.

Related Reports

April 2018 IP Networking Course on Mar 18, 2018
Save $50 ends this Thursday, March 22nd. Register now and save. Lots of generic network training exists but none of it really explains how it...
May 2018 Camera Course on Mar 16, 2018
Our next course starts on May 8th. Register now for the Spring 2018 Camera Course This is the only independent surveillance camera course, based...
Rack Mounting NVRs Tutorial on Mar 14, 2018
Rack mounting recorders is common in professional systems, but manufacturers are making it difficult, with simple design failures causing multiple...
Cellular (4G / LTE / 5G) For Video Surveillance Guide on Mar 06, 2018
In this report, we explain using cellular for video surveillance including: 4G vs LTE vs 5G 4G standards 5G future Advantage: Placing cameras...
Next Gen 5MP / 6MP Camera Shootout (Axis vs Dahua vs Hanwha vs Hikvision) on Feb 28, 2018
Many manufacturers have released new generation 5MP / 6MP cameras that tout super low light, WDR and other features historically typical in 1080p...
Top Video Surveillance Service Call Problems (Statistics) on Feb 28, 2018
In our most recent statistics series, over 150 integrators told IPVM the most common problem their customers have with their video systems....
Hikvision 6MP Camera Tested (DS-2CD4565-IZH) on Feb 27, 2018
In the next installment of our ongoing testing of 5MP/6MP cameras, we test the Hikvision DS-2CD4565F-IZH, a 'Smart Series' vandal dome combining...
Video Privacy Mask Tutorial on Feb 27, 2018
Privacy has historically been hotly debated in the surveillance industry, especially in public surveillance systems where cameras may be located in...
Aruba Networks Profile on Feb 22, 2018
Aruba Networks' presence in the video surveillance market has historically been limited. With a company focus on Wi-Fi first and switching...
Hanwha Wave VMS Tested on Jan 22, 2018
Hanwha has released their first open platform VMS, Wisenet Wave, an Network Optix OEM (see test results) enhanced with integrations and...

Most Recent Industry Reports

Hikvision RSM Professional Misconduct on Mar 19, 2018
A Hikvision RSM engaged in professional misconduct of a US State's licensing law, involving continuing education held at an ADI branch. In this...
Thank You - Today, IPVM Turns 10 Years Old on Mar 19, 2018
IPVM turns 10 years old today. 10 years ago, IPVM was an experiment. Today, it is the largest and most read publication in our industry. I wanted...
Integrator Help Desk Software Usage (Statistics) on Mar 19, 2018
Maintaining accounts and customer satisfaction often depends on the effectiveness of responding to issues. Keeping an integrator's support...
April 2018 IP Networking Course on Mar 18, 2018
Save $50 ends this Thursday, March 22nd. Register now and save. Lots of generic network training exists but none of it really explains how it...
May 2018 Camera Course on Mar 16, 2018
Our next course starts on May 8th. Register now for the Spring 2018 Camera Course This is the only independent surveillance camera course, based...
ADT Hammered Again, Loses Another Billion In Market Cap on Mar 16, 2018
ADT's CEO told investors that, 'in baseball terms', ADT was batting 5 for 5. But investors told ADT's CEO, 'in baseball terms', that he was...
Camera Form Factor Guide on Mar 16, 2018
When selecting surveillance cameras, users may choose from a number of different form factors, each with its own unique strengths and weaknesses,...
Free Trip To China - CCTV.Net / Univew on Mar 15, 2018
Pack your bags? 'Closer than you think'? Well, a non-stop flight from NYC to Shanghai is 15 hours plus another 100 miles to Hangzhou...
Access Control - Restricted Keys Guide on Mar 15, 2018
Not all doors, even in larger facilities, can justify using electronic access control. And even for doors that do have electronic access control,...
Rack Mounting NVRs Tutorial on Mar 14, 2018
Rack mounting recorders is common in professional systems, but manufacturers are making it difficult, with simple design failures causing multiple...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact