Abandoned Object In Crowded Scene - Who Can Provide Accurate Alarm?

Almost every supplier of video analytics say they can detect "Static/Abandoned Objects" but what is your experience with detection of left objects in crowded scenes? Like detection of a bag left of the floor in a busy shopping mall or in the middle of the railway station terminal.

I have been looking at solutions from Avigilon, Agent VI and VCA Technology, but I`m also open for others.

I know that they can provide accurate alarms for left objects in a empty space, but can any provider out there give acurate alarms in a scene where hundreds, and maybe thousends of people walking by the object every hour?

I perfer to get feedback from your real life experience, please let me know if you give me feedback based on experiece or from what you have seen/read in marketing from the supplier. An estimate of false/positive alarm ratio would also be interesting.

Login to read this IPVM discussion.
Why do I need to log in?
IPVM conducts unique testing and research funded by member's payments enabling us to offer the most independent, accurate and in-depth information.

** ******* ***** *** **** *** ********** ****** *** **** behind **** *** ***** ***** **** ** * **** *****, laugh ** **** *** ***** ******* ****. ******* ******* *** trash **** ******.

******, **** ********. *** *** ********* * **** **** **** to ****** ***** ****** **** ********* ********* ****** ** ******* scenes ** ***** / ***** ****.

*** *******, **** * ***** ******* ** ** *******. ** I *** ** *** ** ******** ****, ** * ******** off * **** ** **** *******? ****'* *** ****** *** the ***** **** *** ** *** **** ****. *********, *** will ** ********** ** ******** ****** *** *** **** (***** you **** ** ***).

* **** *** ***** ****** ******** **** *** ****** ***** improvements ** **** ****. * ***** ** ******* ** **** what ****** **** ****.

*’* ****** ******** **** *** ******* *** * ***** *** the ***** ** **** ************* *** *********** **** **********.

* **** ***** ** * ****** *********** ****** *** ******** manufacturer *** ** ****** **** ****** *** ****** *******.

** * ******* *********** *** ****** ******* ****** ****** ** John **** *** **** *** **** ******* *** ******** *** identify *** ***** ** * ****** *****. **** *** ******* to **** **** ** ***** ****** ***** *** ** ****. How **** ** *** ***** ** *** ******* ** ***** a ***** *** ******** *** ******* ** ***** * ***** after * **** ****?

*** ***’* **** *** **** ****, **********:

**** *** ******* ***** ** ******* * ****** ** *** end ** * ******** ****. ***** *** ******** ** ****** milling ***** *** ******* ******, *********, ****** ***** *** ********* trash **** ******.

**** ******** **** **** ** ***** **** ********* ******* **** a ********* ***** *** ** “**** ******”.

**** ** *** **?

******** *** ****, **** ** * **** *****? ******** *** community *** **** *** *****? ****** ***** ** *** **** appears ** ** * ** **** *** ******* **? ***** that’s ** *** *** ****** * **** ************* *********.

**, ********* ******* ** ******* ******** *** **** ** **** off, ***** **** ********* **** ** *** ****’* **** *******?

****’* *** ******? * ****** *** *****? ** ******* *** long ** ***** *** *** **** ** *******?

****** *** ************ *** *********** ************.

****** ** **** **** *** *********** ************ #* *** **** input.

* ***** ** *** *** ** ***** ****, *** **** happen **** * ***** ** ****** **** ** ***** ** the ****** **** ** ******** ** *********. ********** ******** *** object *** * *** *******. * **** **** **** **** cause *** ********* ** ***** ***** ** *** ****** *** start *** ***** **** *** **** *****.

* **** *** *** ********** ********* **********, *** *`* ****** about **** ************* ******* * ****** ** ********** **. ** in **** **** ** * ******** **** *** ** ** alert ** *** * ***** **** **** ****** **** *** a ******** ***** ** ***********. ****** ** *****: *** ******** guards ***** ** ****** *** * ***** ****** ****.

*** ***** ** * *********** ******* ****** *** **** ****** around. **** ********* *** ****** * ******* **** *** **** than ** ******* ** * *****. *****, *** **** ******* can ** ****** ** ****** *******.

** *** **** ** ******* *** ******* *** ****** ***** have ********* *** ****** *** *********.

** ** **********, **** *** ******* *** ********* ******** **** people ****** *** ** **** ******.

***** ******* ******* ********* **** ****, *** ******** **** “**** if”

****** ****** ** ***** ***? ***’* ** ********. ** *****.

***** *** ***** ** *****, ******* *** ******. *****.

******** **** **** *********? *****.

***** **** ****. **** ***** **** *** ****?

***** **** ****. ****** ** *** ** ***** ** *** people ***? **** ****? *** *** ****** ** ***** ***?

** ********, ** *****, ****** *********. *** *** ****** ** worse ***?

**** ** ***, ***** ******** ******** ** ********* *** ** Transit ****** ******** ** ******* **** *** “*** *********, *** Something”

** ***’* **** ***** ******** ******* ********* *** ***** ******* because ** *****’* ***** ****.

*******,

* ***** **** ** ** *********** *** *** ** ******* your ********* *** **** *** ********* ***** ** ********** ** them *** **** ***'* *** **** **** ****.

**** **** *** ****** *** ****** **** *** ***** ** this ****.

**'* ***** ** **** ********* **** ******* ***** *** **** of ************ **** *** **** **** **** ******** * ****-***** solution **** **** **** ***** ** ***** **** - *** will ***** **** ** *** ******** ***** ** **.

***** *** ******** ******* **** ** **** **** ******* *** technical *** *********** ********** ** ****** **** ****** *********.

************ *********: "******** ** *** **** *****"

****** ******** - ********** ************ ******

**** ***** ************ *****

**** *** **** ************ *****: *** ******** #*:

*********: ***/**** ********* *** *** **** ****** ***** ****. '*****' analytics **** ********** ****, *.*., *********, **** ***********, ****** **** behind, ** ********* ** ****** *********.The *** ******* ** ***** ******** ***** *** ********** *********** ***** *** ****.