Introduction to Video CODECs : MJPEG, MPEG-4, H.264

Author: John Honovich, Published on Jun 13, 2008

CODECs are a critical element of choosing, designing and using video surveillance systems. CODECs can lower the price of overall systems and increase the usability of systems. As such, having a basic understanding of what a CODEC is and why CODECs are used is important.

Fundamental Principle of CODECs

The most important factor to understand in video CODECs is that CODECs help balance off different costs.

For instance, let's say you want to go to the mall and to the supermarket. A few years ago, when gas was cheaper, you might have done this in 2 separate trips. Now that gas prices have increased dramatically, you might want to combine those trips. What's happening here is that as gas has become more expensive, you are willing to trade off lower convenience for savings in cash.

Likewise, using CODECs is a balance between the cost of storage, bandwidth and CPUs. Specifically:

CODECs reduce the amount of bandwidth and storage needed at the expense of using more CPU cycles.

As such, selecting a CODEC always requires you to understand the tradeoffs in cost between using less bandwidth and storage or using less CPU cycles. Generally CPU cycles are cheaper than bandwidth and storage so more advance CODECs save you money. Sometimes, CODECs can be too demanding, especially with megapixel cameras and can potentially cost you more in CPU than you save in bandwidth and storage.

Please read our basic bandwidth tutorial for a review of it's impact on video surveillance.

CODECs Overview

Video must be digitized for it to be used and viewed on a computer. CODECs are means or choices in how we make the video digital.

CODECs or compression / decompression technologies are used to modify the video that is being digitized. Similar to how you might ZIP files on your PC, the video is compressed on its way into the computer. And just like with opening a ZIP file, the video is decompressed before you use or view the video. Unlike ZIP files, the compression of video losses some of the information (engineers refer to this as lossy compression). However, with the appropriate settings, a user cannot tell the difference visually.

Get Video Surveillance News In Your Inbox
Get Video Surveillance News In Your Inbox

Just like in the movies or TV, video is a series of images that are displayed rapidly one after the other. In the US, TV consists of displaying a series of 30 images per second. When we view these 30 images per second, it's “video” and it looks smooth. The fact that video is made up of a stream of images is quite important for understanding CODECs.

When you use a CODEC, you can compress the video in two fundamental ways:

  • Compress the individual image by itself
  • Compress a series of images together

When you compress an individual image by itself, you simply take the image, run the compression and output the saved file (technically called intraframe compression). Just like when you use Microsoft Paint and save as a JPEG, video compression of individual images works quite similarly. The difference with video is that you need to do these for a continuous stream of images. As such, rather than simply being a JPEG, it is called Motion JPEG or MJPEG.

The benefit of MJPEG is that it requires very low CPU use. The downside is that storage and bandwidth use can be quite high.

When you only compress an individual image, you ignore what's going on between multiple images in a sequence and often send redundant information. If you are streaming video at multiple frames per second, you often are sending basically the same image over and over again. This can be quite wasteful. It's similar to someone calling you up every minute to tell you nothing changed. It would be far better for the person to only call you when news occurred. You can simply assume during the rest of the time that the status is the same.

When people talk about the benefits of MPEG-4 and H.264, not sending repetitive information is the core source of their strength. Evey so often these CODECs will send a whole image (often called an i frame). The rest of the times they only send updates describing what parts of the image have changed (technically called interframe compression). Since it is common that large parts of the image remains the same, this can result in very significant reductions in storage and bandwidth. For example, where MJPEG may send image after image at 100 KB, codecs like MPEG-4 or H.264 may send the first image at 100 KB but the next 3 or 4 images at only 10 KB each. This can approach can reduce bandwidth and storage use by 50 – 90%.

The downside with this approach is that it takes more work for the computer to do this. When you are simply compressing individual images, you do not need to worry about what happened before or what the next image will contain. You simply apply the compression rule and execute. With MPEG-4 or H.264 you need to examine groups of images and make complex calculations of what changed and what did not. You can imagine this can become very complicated and consume lots of CPU resources.

H.264 and MPEG-4 are similar in that they both reduce bandwidth and storage by examining groups of images when they compress video. A key difference with H.264 is that it uses much more complex and sophisticated rules to do the compression. Because H.264's rules are more sophisticated, they can reduce bandwidth and storage even more than MPEG-4. However, the trade-off is that it takes more CPU cycles to do it.

Looking at Current Video Surveillance Systems

The general trend in video surveillance has been a continuous movement to CODECs that save bandwidth and storage. Historically, you have seen products move from MJPEG to MPEG-4 to H.264. The reason why this has happened is because the cost of CPUs to compress the video has decreased faster than the cost of bandwidth and storage. Most experts expect this trend to continue.

Recently, the biggest challenge using CODECs in video surveillance systems has occurred with the rise in megapixel cameras. For years, the maximum resolution of security cameras was constant.However, with megapixel cameras, the resolution of security cameras has increased by 400% or more. The greater the resolution, the harder the CPU needs to work and the more cycles that need to be allocated.

The huge increase in resolution is similar to the jump in gas prices. It has changed the economics of CODECs. Whereas historically, for standard definition security cameras, CPU cycles were cheaper than bandwidth and storage. Now, since so much more CPU cycles are needed, it can cost way more in CPU than what you save in bandwidth and storage. As such, most commercial megapixel cameras use MJPEG, especially if they are multi-megapixel (more than 1.3 MP).

One of the most important elements in the next few years will be the development of new approaches and use of new CPUs to reduce the cost of using H.264 for megapixel cameras. Much like alternative energy development hopes to bring the cost of energy down, new approaches are being sought to reduce the use of CPU cycles in compressing megapixel camera feeds.

Conclusion

Understanding the basic choices in CODECs and rationale for choosing CODECs is a key element in video surveillance systems. Please share your questions or feedback below.

Related Reports

You Get Robbed, Canary Will Pay You Up To $1,000 on Sep 22, 2016
Canary is trying to break the status quo in DIY security, first by raising over $40 million, and now a revamp of their monthly services package...
History of Video Surveillance on Sep 22, 2016
This is a concise history of video surveillance covering the past decade.  The goal is to help professionals newer to the industry understand...
How to Measure Video Quality / Compression Levels on Sep 16, 2016
Two cameras have the same resolution, frame rate and scene monitored but camera A consumes half the bandwidth than camera B. Is Camera A better?...
Camera Course September 2016 on Sep 15, 2016
This is the only independent surveillance camera course, based on in-depth product and technology testing. Lots of manufacturer training exists...
Milestone Kills Go, Slashes Express Pricing, Launches Enhanced Version Free on Sep 12, 2016
Milestone is shaking up the industry again with enhanced free software and a major price drop. 6 years ago, Milestone launched their first free...
Milestone VMS Adds H.265, SVQR, RAM Video Optimization on Sep 09, 2016
Milestone is rolling out enhancements to XProtect to support H.265, enhanced edge recording functionality, and potentially allow users to reduce...
Hikvision 4K Camera Tested on Sep 09, 2016
Hikvision is the most common choice for low price entry level products but they are also competing with low light models, smart CODECs, WDR...
Pelco Optera 270° Camera Tested on Sep 06, 2016
Multi-imager cameras are typically 180° or 360°. Pelco has released a fixed 270° versions of their Optera intended to cover exterior building...
ONVIF Profile G Video Storage Test on Aug 26, 2016
A standard to retrieve video stored on 3rd party devices. This is the aim of ONVIF Profile G. The proprietary nature of accessing recorded video...
Building Occupancy Codes and Access Control Tutorial on Aug 11, 2016
A building or room's classification can greatly impact which building codes must be followed. In terms of access control, these 'occupancy codes'...

Most Recent Industry Reports

Nest Cam Outdoor Tested on Sep 23, 2016
After years of claiming an outdoor model was "coming", addressing their biggest user demand, Nest has finally released their Outdoor Camera, an...
ACTi Refuses Race To The Bottom, Shifts To Solutions on Sep 23, 2016
The original low cost IP camera disruptor was ACTi. Back in the 2008 - 2010 time frame, Taiwanese manufacturer ACTi challenged the Western and...
You Get Robbed, Canary Will Pay You Up To $1,000 on Sep 22, 2016
Canary is trying to break the status quo in DIY security, first by raising over $40 million, and now a revamp of their monthly services package...
Milestone Ends Development of "Enterprise" VMS on Sep 22, 2016
Milestone 'Enterprise' was one of the first enterprise video management software offerings, selected by many early adopters of IP video. However,...
History of Video Surveillance on Sep 22, 2016
This is a concise history of video surveillance covering the past decade.  The goal is to help professionals newer to the industry understand...
Access Control Course Fall 2016 on Sep 22, 2016
IPVM offers the most comprehensive access control course in the industry. Unlike manufacturer training that focuses only on a small part of the...
Totally Wireless IP Camera (IPVideo Corp NomadHD) on Sep 21, 2016
Wireless battery powered cameras have been a surveillance pipe dream for years, limited by camera power consumption, battery technology, and...
Axis Launches IP Speakers on Sep 21, 2016
First, Axis introduced an IP horn, then it was video intercoms, and now it is Networked Speakers? While IP-based Public Address systems are not...
Tagged RFID Object Search Recorded Video on Sep 20, 2016
Video analytics has gotten fairly good at tagging people in video, but it does not solve the problem of finding items like specific merchandise or...
FLIR and Geovision Join the Hikvision Price Cut Race on Sep 20, 2016
Hikvision's price cuts are clearly a trend setter. After numerous and increasingly large cuts, the destructive cycle is accelerating. Last month,...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact