Introduction to Video CODECs : MJPEG, MPEG-4, H.264

Author: John Honovich, Published on Jun 13, 2008

CODECs are a critical element of choosing, designing and using video surveillance systems. CODECs can lower the price of overall systems and increase the usability of systems. As such, having a basic understanding of what a CODEC is and why CODECs are used is important.

Fundamental Principle of CODECs

The most important factor to understand in video CODECs is that CODECs help balance off different costs.

For instance, let's say you want to go to the mall and to the supermarket. A few years ago, when gas was cheaper, you might have done this in 2 separate trips. Now that gas prices have increased dramatically, you might want to combine those trips. What's happening here is that as gas has become more expensive, you are willing to trade off lower convenience for savings in cash.

Likewise, using CODECs is a balance between the cost of storage, bandwidth and CPUs. Specifically:

CODECs reduce the amount of bandwidth and storage needed at the expense of using more CPU cycles.

As such, selecting a CODEC always requires you to understand the tradeoffs in cost between using less bandwidth and storage or using less CPU cycles. Generally CPU cycles are cheaper than bandwidth and storage so more advance CODECs save you money. Sometimes, CODECs can be too demanding, especially with megapixel cameras and can potentially cost you more in CPU than you save in bandwidth and storage.

Please read our basic bandwidth tutorial for a review of it's impact on video surveillance.

CODECs Overview

Video must be digitized for it to be used and viewed on a computer. CODECs are means or choices in how we make the video digital.

CODECs or compression / decompression technologies are used to modify the video that is being digitized. Similar to how you might ZIP files on your PC, the video is compressed on its way into the computer. And just like with opening a ZIP file, the video is decompressed before you use or view the video. Unlike ZIP files, the compression of video losses some of the information (engineers refer to this as lossy compression). However, with the appropriate settings, a user cannot tell the difference visually.

Get Video Surveillance News In Your Inbox
Get Video Surveillance News In Your Inbox

Just like in the movies or TV, video is a series of images that are displayed rapidly one after the other. In the US, TV consists of displaying a series of 30 images per second. When we view these 30 images per second, it's “video” and it looks smooth. The fact that video is made up of a stream of images is quite important for understanding CODECs.

When you use a CODEC, you can compress the video in two fundamental ways:

  • Compress the individual image by itself
  • Compress a series of images together

When you compress an individual image by itself, you simply take the image, run the compression and output the saved file (technically called intraframe compression). Just like when you use Microsoft Paint and save as a JPEG, video compression of individual images works quite similarly. The difference with video is that you need to do these for a continuous stream of images. As such, rather than simply being a JPEG, it is called Motion JPEG or MJPEG.

The benefit of MJPEG is that it requires very low CPU use. The downside is that storage and bandwidth use can be quite high.

When you only compress an individual image, you ignore what's going on between multiple images in a sequence and often send redundant information. If you are streaming video at multiple frames per second, you often are sending basically the same image over and over again. This can be quite wasteful. It's similar to someone calling you up every minute to tell you nothing changed. It would be far better for the person to only call you when news occurred. You can simply assume during the rest of the time that the status is the same.

When people talk about the benefits of MPEG-4 and H.264, not sending repetitive information is the core source of their strength. Evey so often these CODECs will send a whole image (often called an i frame). The rest of the times they only send updates describing what parts of the image have changed (technically called interframe compression). Since it is common that large parts of the image remains the same, this can result in very significant reductions in storage and bandwidth. For example, where MJPEG may send image after image at 100 KB, codecs like MPEG-4 or H.264 may send the first image at 100 KB but the next 3 or 4 images at only 10 KB each. This can approach can reduce bandwidth and storage use by 50 – 90%.

The downside with this approach is that it takes more work for the computer to do this. When you are simply compressing individual images, you do not need to worry about what happened before or what the next image will contain. You simply apply the compression rule and execute. With MPEG-4 or H.264 you need to examine groups of images and make complex calculations of what changed and what did not. You can imagine this can become very complicated and consume lots of CPU resources.

H.264 and MPEG-4 are similar in that they both reduce bandwidth and storage by examining groups of images when they compress video. A key difference with H.264 is that it uses much more complex and sophisticated rules to do the compression. Because H.264's rules are more sophisticated, they can reduce bandwidth and storage even more than MPEG-4. However, the trade-off is that it takes more CPU cycles to do it.

Looking at Current Video Surveillance Systems

The general trend in video surveillance has been a continuous movement to CODECs that save bandwidth and storage. Historically, you have seen products move from MJPEG to MPEG-4 to H.264. The reason why this has happened is because the cost of CPUs to compress the video has decreased faster than the cost of bandwidth and storage. Most experts expect this trend to continue.

Recently, the biggest challenge using CODECs in video surveillance systems has occurred with the rise in megapixel cameras. For years, the maximum resolution of security cameras was constant.However, with megapixel cameras, the resolution of security cameras has increased by 400% or more. The greater the resolution, the harder the CPU needs to work and the more cycles that need to be allocated.

The huge increase in resolution is similar to the jump in gas prices. It has changed the economics of CODECs. Whereas historically, for standard definition security cameras, CPU cycles were cheaper than bandwidth and storage. Now, since so much more CPU cycles are needed, it can cost way more in CPU than what you save in bandwidth and storage. As such, most commercial megapixel cameras use MJPEG, especially if they are multi-megapixel (more than 1.3 MP).

One of the most important elements in the next few years will be the development of new approaches and use of new CPUs to reduce the cost of using H.264 for megapixel cameras. Much like alternative energy development hopes to bring the cost of energy down, new approaches are being sought to reduce the use of CPU cycles in compressing megapixel camera feeds.

Conclusion

Understanding the basic choices in CODECs and rationale for choosing CODECs is a key element in video surveillance systems. Please share your questions or feedback below.

Related Reports

Nest Cam IQ Tested on Jul 10, 2017
Nest has released their latest entry in their camera line, the Nest Cam IQ, touting 4K "Supersight", facial recognition, "HD audio", invisible IR,...
H.265 / HEVC Codec Tutorial 2017 on Jun 30, 2017
For years, video surveillance professionals have talked about the potential for H.265. Now, in 2017, H.265 is starting to gain mainstream...
Hikvision H.265+ Tested on Jun 27, 2017
Hikvision, which in the past few years released H.264+ (see test results) has now released H.265+, that claims even greater bandwidth savings. We...
Covert Cloud Camera Service Launching (KJB) on Jun 22, 2017
Cloud IP cameras, for consumers, has become increasingly commonplace. However, covert cameras, lag there, with few options. Now, North America's...
45 Drives 'Lowest Cost' Enterprise Storage Company Profile on Jun 21, 2017
45 Drives claims the "lowest cost per Hard Drive Slot in the industry." But who or what is '45 Drives'? What started as a product design to...
Axis 20MP Q1659 Camera Tested on Jun 13, 2017
Axis has joined the super high resolution camera trend with their Q1659, a 20MP model equipped with Canon's APS-C sensor. We tested the Q1659...
Samsung SmartCam A1 Totally Wireless System on Jun 06, 2017
Hanwha is keeping the Samsung brand alive in consumer cameras with the SmartCam A1, a new offering combining an autotracking 1080p camera with base...
Blink XT Outdoor Totally Wireless Camera Tested on May 11, 2017
Running wires for cameras outdoors is one of the biggest challenges, especially for consumer or DIY installs. Now, Blink has released an outdoor...
48MP 180 Camera (Digital Watchdog) Test on May 10, 2017
Camera resolution continues to advance, with Digital Watchdog offering the MegaPIX PANO 48MP 180° camera, the highest resolution mainstream camera...
On-Board Storage Usage Statistics 2017 on May 03, 2017
SD card slots are now commonplace on IP cameras, but is on-board storage usage now common place? In 2014, integrators reported using edge...

Most Recent Industry Reports

Axis Door Station Tested (A8105-E) on Jul 19, 2017
Axis continues their push into niche markets, especially audio, with network speakers, an IP horn, and video door stations. We tested Axis'...
Manufacturer Favorability Guide on Jul 19, 2017
This 120 page PDF guide may be downloaded inside by all IPVM members. It covers our 20 manufacturer favorability rankings and 20 manufacturer...
$8 Billion Utility Georgia Power Enters Surveillance Business Offering Avigilon And Genetec on Jul 19, 2017
Utilities are typically considered major customers of surveillance integrators but one utility, Georgia Power, with $8+ billion in annual revenue...
Knightscope Laughs off Robot Drowning on Jul 18, 2017
A day after a Knightscope robot drowned, Knightscope has issued an 'official statement' making fun of the issue: The implied message is that...
Microsoft Video AI Cloud Services Examined on Jul 18, 2017
Microsoft has released one of the most amazing video analytics marketing videos ever. In it, they detect oil spills, track individual people giving...
Hikvision USA Head of Cybersecurity Exits on Jul 18, 2017
Hikvision USA's Head of Cybersecurity has exited the company. In this note, we review the move, share Hikvision's feedback and examine the...
'Suicidal' Knightscope Robot Drowns on Jul 17, 2017
Knightscope continues its hyper growth, at least when it comes to controversy, this time with a 'suicidal' robot in Washington DC. And here is...
March Networks Company Profile on Jul 17, 2017
March Networks was one of the most well-known video surveillance manufacturers of the 2000s. In 2012, March was acquired by Chinese / American...
Milestone Beats OnSSI In Court on Jul 17, 2017
The litigation between former partners Milestone and OnSSI has finished, confirmed by both parties. In April 2016, OnSSI sued Milestone and in...
Power For Burglar Alarms on Jul 14, 2017
In order to operate, alarm panels require the high voltages found in electrical outlets be converted to the low voltages they run on. In this...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact