Introduction to Video CODECs : MJPEG, MPEG-4, H.264

Author: John Honovich, Published on Jun 13, 2008

CODECs are a critical element of choosing, designing and using video surveillance systems. CODECs can lower the price of overall systems and increase the usability of systems. As such, having a basic understanding of what a CODEC is and why CODECs are used is important.

Fundamental Principle of CODECs

The most important factor to understand in video CODECs is that CODECs help balance off different costs.

For instance, let's say you want to go to the mall and to the supermarket. A few years ago, when gas was cheaper, you might have done this in 2 separate trips. Now that gas prices have increased dramatically, you might want to combine those trips. What's happening here is that as gas has become more expensive, you are willing to trade off lower convenience for savings in cash.

Likewise, using CODECs is a balance between the cost of storage, bandwidth and CPUs. Specifically:

CODECs reduce the amount of bandwidth and storage needed at the expense of using more CPU cycles.

As such, selecting a CODEC always requires you to understand the tradeoffs in cost between using less bandwidth and storage or using less CPU cycles. Generally CPU cycles are cheaper than bandwidth and storage so more advance CODECs save you money. Sometimes, CODECs can be too demanding, especially with megapixel cameras and can potentially cost you more in CPU than you save in bandwidth and storage.

Please read our basic bandwidth tutorial for a review of it's impact on video surveillance.

CODECs Overview

Video must be digitized for it to be used and viewed on a computer. CODECs are means or choices in how we make the video digital.

CODECs or compression / decompression technologies are used to modify the video that is being digitized. Similar to how you might ZIP files on your PC, the video is compressed on its way into the computer. And just like with opening a ZIP file, the video is decompressed before you use or view the video. Unlike ZIP files, the compression of video losses some of the information (engineers refer to this as lossy compression). However, with the appropriate settings, a user cannot tell the difference visually.

Get Video Surveillance News In Your Inbox
Get Video Surveillance News In Your Inbox

Just like in the movies or TV, video is a series of images that are displayed rapidly one after the other. In the US, TV consists of displaying a series of 30 images per second. When we view these 30 images per second, it's “video” and it looks smooth. The fact that video is made up of a stream of images is quite important for understanding CODECs.

When you use a CODEC, you can compress the video in two fundamental ways:

  • Compress the individual image by itself
  • Compress a series of images together

When you compress an individual image by itself, you simply take the image, run the compression and output the saved file (technically called intraframe compression). Just like when you use Microsoft Paint and save as a JPEG, video compression of individual images works quite similarly. The difference with video is that you need to do these for a continuous stream of images. As such, rather than simply being a JPEG, it is called Motion JPEG or MJPEG.

The benefit of MJPEG is that it requires very low CPU use. The downside is that storage and bandwidth use can be quite high.

When you only compress an individual image, you ignore what's going on between multiple images in a sequence and often send redundant information. If you are streaming video at multiple frames per second, you often are sending basically the same image over and over again. This can be quite wasteful. It's similar to someone calling you up every minute to tell you nothing changed. It would be far better for the person to only call you when news occurred. You can simply assume during the rest of the time that the status is the same.

When people talk about the benefits of MPEG-4 and H.264, not sending repetitive information is the core source of their strength. Evey so often these CODECs will send a whole image (often called an i frame). The rest of the times they only send updates describing what parts of the image have changed (technically called interframe compression). Since it is common that large parts of the image remains the same, this can result in very significant reductions in storage and bandwidth. For example, where MJPEG may send image after image at 100 KB, codecs like MPEG-4 or H.264 may send the first image at 100 KB but the next 3 or 4 images at only 10 KB each. This can approach can reduce bandwidth and storage use by 50 – 90%.

The downside with this approach is that it takes more work for the computer to do this. When you are simply compressing individual images, you do not need to worry about what happened before or what the next image will contain. You simply apply the compression rule and execute. With MPEG-4 or H.264 you need to examine groups of images and make complex calculations of what changed and what did not. You can imagine this can become very complicated and consume lots of CPU resources.

H.264 and MPEG-4 are similar in that they both reduce bandwidth and storage by examining groups of images when they compress video. A key difference with H.264 is that it uses much more complex and sophisticated rules to do the compression. Because H.264's rules are more sophisticated, they can reduce bandwidth and storage even more than MPEG-4. However, the trade-off is that it takes more CPU cycles to do it.

Looking at Current Video Surveillance Systems

The general trend in video surveillance has been a continuous movement to CODECs that save bandwidth and storage. Historically, you have seen products move from MJPEG to MPEG-4 to H.264. The reason why this has happened is because the cost of CPUs to compress the video has decreased faster than the cost of bandwidth and storage. Most experts expect this trend to continue.

Recently, the biggest challenge using CODECs in video surveillance systems has occurred with the rise in megapixel cameras. For years, the maximum resolution of security cameras was constant.However, with megapixel cameras, the resolution of security cameras has increased by 400% or more. The greater the resolution, the harder the CPU needs to work and the more cycles that need to be allocated.

The huge increase in resolution is similar to the jump in gas prices. It has changed the economics of CODECs. Whereas historically, for standard definition security cameras, CPU cycles were cheaper than bandwidth and storage. Now, since so much more CPU cycles are needed, it can cost way more in CPU than what you save in bandwidth and storage. As such, most commercial megapixel cameras use MJPEG, especially if they are multi-megapixel (more than 1.3 MP).

One of the most important elements in the next few years will be the development of new approaches and use of new CPUs to reduce the cost of using H.264 for megapixel cameras. Much like alternative energy development hopes to bring the cost of energy down, new approaches are being sought to reduce the use of CPU cycles in compressing megapixel camera feeds.


Understanding the basic choices in CODECs and rationale for choosing CODECs is a key element in video surveillance systems. Please share your questions or feedback below.

Related Reports

Mobile VMS Top Integrator Problems on Oct 24, 2016
In an IPVM survey, integrators report 4 problems most consistently with using mobile VMS applications: Network setup / cybersecurity...
Sony and Samsung Breaking VBR on Oct 21, 2016
For years, users have known variable bitrate (VBR) as one thing only: bandwidth varies, compression stays the same. This is not an accident but an...
Cisco Meraki Launches The Most Expensive HD Camera In Years on Oct 14, 2016
The video surveillance market is racing to the bottom, with 3MP IP cameras being sold for as low as ~$100 through distribution. Cisco is not...
4 Biggest Low Light Problems on Oct 10, 2016
100 integrators told IPVM what their biggest problems were with low light images. The most commonly cited themes were: Limited IR Range Uneven...
Samsung 'Q' Low-Cost 1080p Dome Tested on Oct 10, 2016
The most competitive part of the market is for low-cost cameras. Hanwha Techwin / Samsung has released its new low-cost Q series to go after this...
VSaaS Startup Raises $5 Million For Global Expansion on Oct 04, 2016
There is money to be made in VSaaS. At least that is what the investors of Morphean believe. The Swiss company received a $5M investment to expand...
Axis Zipstream 2 Tested on Oct 03, 2016
Smart codecs are one of the big trends in the industry now. Axis was the first manufacturer to launch a smart codec, releasing Zipstream in Spring...
Arecont To Release Industries' Best H.265 Support on Sep 30, 2016
Go big, or go home. That seems to be Arecont's philosophy for H.265, they say they are working on the "best" H.265 implementation in the...
VLANs for Video Surveillance Tutorial on Sep 26, 2016
Many people confidently say to 'use VLANs' as an answer to IP video networking problems and as a way to signal expertise. But how should VLANs be...
You Get Robbed, Canary Will Pay You Up To $1,000 on Sep 22, 2016
Canary is trying to break the status quo in DIY security, first by raising over $40 million, and now a revamp of their monthly services package...

Most Recent Industry Reports

The Xiongmai Botnet 'Recall' Will Not Work on Oct 25, 2016
The Xiongmai 'recall' has been the topic of global news, following the unprecedented bot net attacks that use their equipment, among...
Hikvision Partners With Intel Movidius For Artificial intelligence Cameras on Oct 25, 2016
The world's largest camera manufacturer is partnering with the worlds largest semiconductor company to create a series of intelligent...
Intel Movidius Targets Video Surveillance Market on Oct 25, 2016
The most commonly used chips in IP cameras come from Ambarella, Hisilicon or TI. Now, Movidius, who Intel announced acquiring in September, is...
Favorite Access Control 2016 on Oct 25, 2016
Integrators told us "What is your favorite access control management software/system? Why?", and the responses are interesting indeed. While no...
Video Surveillance Manufacturers Risk Lawsuits For Botnet Attacks on Oct 24, 2016
The unprecedented scale of internet outages on October 21st from botnet attacks risk triggering lawsuits against video surveillance manufacturers,...
Mobile VMS Top Integrator Problems on Oct 24, 2016
In an IPVM survey, integrators report 4 problems most consistently with using mobile VMS applications: Network setup / cybersecurity...
Chinese Company Xiongmai Threatens Legal Action Against Western Accusers on Oct 24, 2016
The Chinese video surveillance manufacturer, Xiongmai, whose equipment numerous sources blame for driving massive Internet attacks over the past...
"WTF?!?!? Who is Brian Karas?!?" Exclaims Knightscope on Oct 21, 2016
Knightscope co-founder Stacy Stephens emailed us: He may not have intended to send it to us and he probably can figure out who Brian Karas is,...
Security Consultants Speak Episode 1 - Protus3 on Oct 21, 2016
This is a first of a series of conversations with security consultants. If you are a security consultant that wants to talk and can share frank...
Sony and Samsung Breaking VBR on Oct 21, 2016
For years, users have known variable bitrate (VBR) as one thing only: bandwidth varies, compression stays the same. This is not an accident but an...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact