Introduction to Video CODECs : MJPEG, MPEG-4, H.264

By: John Honovich, Published on Jun 13, 2008

CODECs are a critical element of choosing, designing and using video surveillance systems. CODECs can lower the price of overall systems and increase the usability of systems. As such, having a basic understanding of what a CODEC is and why CODECs are used is important.

Fundamental Principle of CODECs

The most important factor to understand in video CODECs is that CODECs help balance off different costs.

For instance, let's say you want to go to the mall and to the supermarket. A few years ago, when gas was cheaper, you might have done this in 2 separate trips. Now that gas prices have increased dramatically, you might want to combine those trips. What's happening here is that as gas has become more expensive, you are willing to trade off lower convenience for savings in cash.

Likewise, using CODECs is a balance between the cost of storage, bandwidth and CPUs. Specifically:

CODECs reduce the amount of bandwidth and storage needed at the expense of using more CPU cycles.

As such, selecting a CODEC always requires you to understand the tradeoffs in cost between using less bandwidth and storage or using less CPU cycles. Generally CPU cycles are cheaper than bandwidth and storage so more advance CODECs save you money. Sometimes, CODECs can be too demanding, especially with megapixel cameras and can potentially cost you more in CPU than you save in bandwidth and storage.

Please read our basic bandwidth tutorial for a review of it's impact on video surveillance.

CODECs Overview

Video must be digitized for it to be used and viewed on a computer. CODECs are means or choices in how we make the video digital.

CODECs or compression / decompression technologies are used to modify the video that is being digitized. Similar to how you might ZIP files on your PC, the video is compressed on its way into the computer. And just like with opening a ZIP file, the video is decompressed before you use or view the video. Unlike ZIP files, the compression of video losses some of the information (engineers refer to this as lossy compression). However, with the appropriate settings, a user cannot tell the difference visually.

Get Notified of Video Surveillance Breaking News
Get Notified of Video Surveillance Breaking News

Just like in the movies or TV, video is a series of images that are displayed rapidly one after the other. In the US, TV consists of displaying a series of 30 images per second. When we view these 30 images per second, it's “video” and it looks smooth. The fact that video is made up of a stream of images is quite important for understanding CODECs.

When you use a CODEC, you can compress the video in two fundamental ways:

  • Compress the individual image by itself
  • Compress a series of images together

When you compress an individual image by itself, you simply take the image, run the compression and output the saved file (technically called intraframe compression). Just like when you use Microsoft Paint and save as a JPEG, video compression of individual images works quite similarly. The difference with video is that you need to do these for a continuous stream of images. As such, rather than simply being a JPEG, it is called Motion JPEG or MJPEG.

The benefit of MJPEG is that it requires very low CPU use. The downside is that storage and bandwidth use can be quite high.

When you only compress an individual image, you ignore what's going on between multiple images in a sequence and often send redundant information. If you are streaming video at multiple frames per second, you often are sending basically the same image over and over again. This can be quite wasteful. It's similar to someone calling you up every minute to tell you nothing changed. It would be far better for the person to only call you when news occurred. You can simply assume during the rest of the time that the status is the same.

When people talk about the benefits of MPEG-4 and H.264, not sending repetitive information is the core source of their strength. Evey so often these CODECs will send a whole image (often called an i frame). The rest of the times they only send updates describing what parts of the image have changed (technically called interframe compression). Since it is common that large parts of the image remains the same, this can result in very significant reductions in storage and bandwidth. For example, where MJPEG may send image after image at 100 KB, codecs like MPEG-4 or H.264 may send the first image at 100 KB but the next 3 or 4 images at only 10 KB each. This can approach can reduce bandwidth and storage use by 50 – 90%.

The downside with this approach is that it takes more work for the computer to do this. When you are simply compressing individual images, you do not need to worry about what happened before or what the next image will contain. You simply apply the compression rule and execute. With MPEG-4 or H.264 you need to examine groups of images and make complex calculations of what changed and what did not. You can imagine this can become very complicated and consume lots of CPU resources.

H.264 and MPEG-4 are similar in that they both reduce bandwidth and storage by examining groups of images when they compress video. A key difference with H.264 is that it uses much more complex and sophisticated rules to do the compression. Because H.264's rules are more sophisticated, they can reduce bandwidth and storage even more than MPEG-4. However, the trade-off is that it takes more CPU cycles to do it.

Looking at Current Video Surveillance Systems

The general trend in video surveillance has been a continuous movement to CODECs that save bandwidth and storage. Historically, you have seen products move from MJPEG to MPEG-4 to H.264. The reason why this has happened is because the cost of CPUs to compress the video has decreased faster than the cost of bandwidth and storage. Most experts expect this trend to continue.

Recently, the biggest challenge using CODECs in video surveillance systems has occurred with the rise in megapixel cameras. For years, the maximum resolution of security cameras was constant.However, with megapixel cameras, the resolution of security cameras has increased by 400% or more. The greater the resolution, the harder the CPU needs to work and the more cycles that need to be allocated.

The huge increase in resolution is similar to the jump in gas prices. It has changed the economics of CODECs. Whereas historically, for standard definition security cameras, CPU cycles were cheaper than bandwidth and storage. Now, since so much more CPU cycles are needed, it can cost way more in CPU than what you save in bandwidth and storage. As such, most commercial megapixel cameras use MJPEG, especially if they are multi-megapixel (more than 1.3 MP).

One of the most important elements in the next few years will be the development of new approaches and use of new CPUs to reduce the cost of using H.264 for megapixel cameras. Much like alternative energy development hopes to bring the cost of energy down, new approaches are being sought to reduce the use of CPU cycles in compressing megapixel camera feeds.

Conclusion

Related Reports

Directory of 30+ VSaaS / Cloud Video Surveillance Providers on Jun 07, 2019
This directory provides a list of VSaaS / cloud video surveillance providers...
Smart CODEC Usage Statistics 2019 on Jun 03, 2019
Smart codecs are now nearly a standard feature in IP cameras, but our...
Camera Calculator V3.1 Release Improves User Experience on Oct 17, 2019
IPVM has released a new version of our Camera Calculator, V3.1, with...
Dedicated Vs Converged IP Video Networks Statistics 2020 on Sep 10, 2020
Running one's video system on a converged network with other devices can save...
Consumer IP Camera Analytics / AI Shootout - Arlo, Google / Nest, Amazon / Ring, Hikvision / Ezviz, Wyze Cam, Yi Home on Sep 26, 2019
AI analytics are hitting the mainstream in the consumer camera market, with...
Budget Covert Cameras Tested on Nov 26, 2019
Covert cameras under $100 are widely available online but are they any...
The Future of H.266 For Video Surveillance Examined on Aug 17, 2020
First H.264, now H.265, is H.266 next? H.266 was recently announced amid...
Bandwidth Fundamentals For Video Surveillance on Jan 13, 2020
Bandwidth is the most fundamental element of computer networking for video...
Quantum Dots Potential for Surveillance Cameras Explained on Sep 08, 2020
Quantum dots are starting to be used in TVs for better images, but how will...
Hidden Camera Detectors Tested on Nov 18, 2019
Hidden cameras are a growing problem as cameras become smaller, cheaper and...
Converged vs Dedicated Networks For Surveillance Tutorial on Feb 12, 2020
Use the existing network or deploy a new one? This is a critical choice in...
Axis Live Privacy Shield Analytics Tested on Jun 25, 2019
Privacy is becoming a bigger factor in video surveillance, driven both by...
Proactive CCTV "Only Affordable Video Archiving Solution" Profile on Aug 12, 2019
Proactive CCTV is claiming to offer "the only affordable video archiving...
Amazon Ring Public Subsidy Program Aims To Dominate Residential Security on May 20, 2019
Amazon dominates market after market. Quitely, but increasingly, they are...
The 2020 Video Surveillance Industry Guide on Dec 20, 2019
The 300-page, 2020 Video Surveillance Industry Guide covers the key events...

Recent Reports

Temperature Tablet Shootout - Dahua, Hikvision, ZKTeco, TVT + 5 More on Sep 30, 2020
Temperature tablets, aka terminal or stations, have emerged as a 'low-cost...
New Products Show Fall 2020 Tomorrow Bosch, FLIR, Hanwha, Tyco, Avigilon More! on Sep 30, 2020
IPVM's sixth online show concludes tomorrow with our special temperature...
ButterflyMX Raises $35 Million on Sep 30, 2020
Startup ButterflyMX has raised $35 million for its smartphone based intercom...
Worst Access Control Manufacturers 2020 on Sep 30, 2020
200+ Integrators told IPVM "In the past year, what access control...
Access Control Levels and Schedules Tutorial on Sep 29, 2020
Configuring access levels and setting up schedules is central to maintaining...
Avigilon / Motorola VS Virtual ISC West on Sep 29, 2020
ISC West has historically been so dominant that no player would think of...
Dartmouth College Deploys K3 Temperature Screening on Sep 29, 2020
While Dartmouth College has a $6+ billion endowment, the College has bought...
Hanwha AI Object Detection Tested on Sep 28, 2020
Hanwha has added detection and classification of people, cars, clothing...
Favorite Access Control Manufacturers 2020 on Sep 28, 2020
200+ Integrators told IPVM "What is your favorite access control management...
OnTech Smart Services Partners With Google and Amazon To Compete With Integrators on Sep 25, 2020
A pain point for many homeowners to use consumer security and surveillance is...
The Future of Metalens For Video Surveillance Cameras - MIT / UMass / Immervision on Sep 25, 2020
Panoramic cameras using 'fisheye' lens have become commonplace in video...
Hikvision Sues Over Brazilian Airport Loss on Sep 24, 2020
Hikvision was excluded from a Brazilian airport project because it is owned...
China General Chamber of Commerce Calls Out US Politics on Sep 24, 2020
While US-China relations are at an all-time low, optimism about relations...
Verkada Disruptive Embedded Live Help on Sep 24, 2020
Call up your integrator? Have someone come by the next day? Verkada is...
IP Networking Course Fall 2020 - Last Chance - Register Now on Sep 23, 2020
Today is the last chance to register for the only IP networking course...