SVC - A Better H.264 Coming For Video Surveillance

Author: IPVM, Published on Oct 01, 2008

SVC will solve a key problem of H.264: While H.264 generates a fixed quality and sized video stream, video surveillance users can benefit greatly from the dynamic re-sizing that SVC allows. The two main benefits of this are improved remote viewing and more efficient storage utilitzation.

This report provides an overview of the key elements and benefits. For greater depth, read a more in-depth and technical tutorial on SVC.

Using H.264 provides benefits but this may not be enough to meet video surveillance user's needs. H.264 is sufficient for small numbers of cameras to attempt to share the bandwidth of a corporate network, but it is not good enough to reach out over DSL to remote locations.  With megapixel cameras becoming increasingly common, even the bandwidth consumption of corporate networks is becoming an issue.

The compression efficiency of H.264 requires significant processing power in both the compression and decompression engines.  This raises the cost of encoding subsystems in cameras and DVRs, and makes decoding the stream on portable devices in the field prohibitively expensive.  To make the streams more accessible, the surveillance community has attempted to leverage the techniques of the past and either simulcasts or trans-rates multiple frame rate and resolution versions of the same stream.  Each version is targeted towards the specific compute and bandwidth characteristics of a particular client or application.  In doing so, the costs of encode and decode are incurred multiple times.  With the increasing diversity of video enabled portable devices in the field and the desire to view the exploding number of available feeds from remote locations, this problem is set to get geometrically worse.  Enter the Scalable Video Codec (SVC) extension to the H.264 standard.

SVC replaces the “all or nothing” approach to video compression (shard by MPEG4 and conventional H.264) with a layered, scalable approach.  In an SVC encoder, a low frame rate and low resolution version of the source video stream is first processed.  This forms a baseline layer of encoded video.  A second layer of information is then encoded from a higher frame rate or higher resolution version of the video stream using this baseline layer to guide the encode process.  A third layer of increased resolution or frame rate is then encoded using the second layer as a starting point.  This process continues on each successive layer.  This technique of using previously encoded information to guide subsequent encodes reduces the overhead that would otherwise be incurred in a multi-encode system.  At the end of the encode process, all layers are assembled into a single stream and transmitted.

The advantage of this approach is that a client device can decode the received stream, starting with the baseline layer, and then decode incremental information from subsequent layers until the desired frame rate and resolution is achieved.  A device having a lower resolution display or less compute power available for decode might elect to terminate the decode process after the first few layers.  A higher powered or high definition client device might decode all of the layers as they arrive, thus obtaining the video at full resolution and frame rate.  In this way, a single stream can be used to service any client device simply by allowing the client to decide how much to decode.  This characteristic of SVC streams will facilitate the adoption of high definition cameras whose streams would otherwise need to be re-encoded for legacy devices.

Another advantage to this approach is that a multi-layered stream can simply be truncated to yield a decodable stream with lower resolution and frame rate.  This can be done within the network itself, with the stream being truncated as it passes from a high bandwidth link to a lower bandwidth link.  In this way, the stream is sized to match network bandwidth and yield video with reduced resolution or frame rate without having to decode the stream.  This is a major improvement over the alternative, which requires a server in the network to decode the stream, scale the decoded video, and then re-encode the video as it is forwarded. 

This same decimation process might occur after the video is captured and stored.  Parsing a stored file to remove some of the higher order layers would quickly and easily recover disk space in a DVR, while having the effect of reducing the video’s resolution or frame rate.  Using the scalability of an SVC encoded stream, a surveillance operator could gracefully degrade video over time to manage storage consumption.  In this way, video could be archived for longer using less storage than would be consumed by a conventionally encoded stream.

SVC is set to revolutionize the way video is moved, consumed, and stored.  The flexibility afforded by the scalable stream will allow video to be accessed by a more diverse and increased number of consuming devices over myriad network bandwidths and technologies.  Operators will be able to cost effectively size encoded video and manage it over time with greater flexibility than ever before.

Bob Beachler is the VP of Marketing at Stretch.

5 reports cite this report:

New Surveillance Products Spring 2011 Final on Apr 06, 2011
In this report, we provide a single source listing new video surveillance products announced in Spring 2011 and in conjunction with ISC West.For...
Investments & Acquisitions Directory 2011 on Dec 26, 2010
This directory provides a single source of information on funding and acquisitions in the video surveillance market. It is part of our Video...
Stretch's Hybrid HD DVR Reference Design Examined on Nov 18, 2009
Chipmaker Stretch has announced a reference design for a hybrid High Definition DVR system. For background on Stretch see our examination of...
How Much Storage is Needed for Video Surveillance? on Aug 15, 2009
How much storage is needed for video surveillance is an important question for planning new system deployments and for determining total...
IP Camera 2009 Mid Year Review on Jul 26, 2009
Megapixel was the most dominant trend in IP cameras over the first half of 2009. So dominant was megapixel, that not only did most manufacturers...

Related Reports

Testing Bandwidth Vs. Low Light on Jan 16, 2019
Nighttime bandwidth spikes are a major concern in video surveillance. Many calculate bandwidth as a single 24/7 number, but bit rates vary...
Winter 2019 IP Networking Course on Jan 10, 2019
Today is the last day to register for the Winter 2019 IP Networking course. This is the only networking course designed specifically for video...
Managed Video Services UL 827B Examined on Jan 09, 2019
Historically, UL listings for central stations have been important, with UL 827 having widespread support. However, few central stations have...
H.265 / HEVC Codec Tutorial on Jan 08, 2019
H.265 support improved significantly in 2018, with H.265 camera/VMS compatibility increased compared to only a year ago, and most manufacturers...
Surveillance Codec Guide on Jan 03, 2019
Codecs are core to surveillance, with names like H.264, H.265, and MJPEG commonly cited. How do they work? Why should you use them? What issues may...
Camera Course January 2019 on Jan 03, 2019
This is the only independent surveillance camera course, based on in-depth product and technology testing. Lots of manufacturer training exists...
The Battle For The VSaaS Market Begins 2019 - Alarm.com, Arcules, Eagle Eye, OpenEye, Qumulex, Verkada, More on Jan 02, 2019
2019 will be the year that VSaaS finally becomes a real factor for professional video surveillance. While Video Surveillance as a Service (VSaaS)...
8MP / 4K Fixed Lens Camera Shootout - Dahua, Hikvision, TVT, Uniview on Dec 17, 2018
8MP / 4K fixed lens models are now common in lower cost lines, with nearly every Chinese brand and their OEMs now offering multiple options. To...
Cisco Meraki New Cameras and AI Analytics on Dec 14, 2018
Meraki has released their second generation of video surveillance with 3 new cameras, AI-based video analytics, and 2 cloud-based storage...
Ubiquiti $79 Flex IP Camera Tested on Dec 07, 2018
U.S. Manufacturer Ubiquiti has released a 1080p, integrated IR IP camera, selling it directly for $79, making this one of the least expensive IP...

Most Recent Industry Reports

Access Control Records Maintenance Guide on Jan 16, 2019
Weeding out old entries, turning off unused credentials, and updating who carries which credentials is as important as to maintaining security as...
UK Fines Security Firms For Illegal Direct Marketing on Jan 16, 2019
Two UK security firms have paid over $200,000 in fines for illegally making hundreds of thousands of calls to people registered on a government...
Access Control Cabling Tutorial on Jan 15, 2019
Access Control is only as reliable as its cables. While this aspect lacks the sexiness of other components, it remains a vital part of every...
Avigilon Favorability Results 2019 on Jan 15, 2019
Since IPVM's 2017 Avigilon favorability results, the company was acquired by Motorola and has shifted from being an aggressive startup to a more...
Gorilla Technology AI Provider, Raises $15 Million, Profiled on Jan 15, 2019
Gorilla Technology is a Taiwanese video analytics manufacturer that recently announced a $15 million investment from SBI Group, saying this...
2019 IP Networking Book Released on Jan 14, 2019
The new IP Networking Book 2019 is a 285 page in-depth guide that teaches you how IT and telecom technologies impact modern security...
Arecont Costar Layoffs on Jan 14, 2019
Arecont Vision, a Costar Company, has laid off more than 10% of their workforce in a move the company described to IPVM as a result of "important...
The False SCMP Story on Hikvision NYC AI on Jan 14, 2019
In the past week, one of Asia's largest publications, the South China Morning Post (SCMP), posted an article about "Chinese [facial recognition]...
WDR Tutorial on Jan 11, 2019
Understanding wide dynamic range (WDR) is critical to capturing high quality images in demanding conditions. However, with no real standards, any...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact