Underestimated: Stanford Study On Surveillance Cameras In Large Cities Worldwide

By Zach Segal, Published Jun 28, 2021, 11:37am EDT

IPVM analysis finds Stanford researchers have significantly underestimated the number of outdoor surveillances in 10 US cities plus Bangkok, London, Paris, Seoul, Singapore, and Tokyo.

IPVM Image

IPVM analyzes the methodology and summarizes its findings including talking with the team behind it and the Amnesty International team behind a similar study.

Study ***** ****** ***** ***** *** *********

*** ***** ************* ******* ************ ****** usage ** ***** ***** in **** ****** *** actually *** ******** **** the ****** ****** **** tracked *****.

IPVM Image

Decline ****** ********

***** *** *********** ***** that ****** ***** *** overall **** *** ******** in **** ******, **** as **, *********, *** Washington, **., ** ******* this ** ****** ********. Camera ***** ********* ************* over *** **** ******, by ****** *****, ****** over **%, *** ** units (**** ******** ** this), ** ***%+ (*** to *** **** ** the ******). ********, **** means, ****** ****** ****** be *** **********.

Smaller ******* ***** **** ** **** ****** **********

*** ******* **** ** cameras *** ****** ***** may **** ****** **** missed ********** ** *** newer ****-**** ****** **** older ****-**** ****** ******* them ** ******** ****** count ** ****. *** example, ** *** ***** 2010s, **** **** *** more ****** *** ***** later ** *** ****** the ****** ************ ******* to *********, ***** *** harder *** ********'* ********* to ******.

IPVM Image

New **** **** ******** ***

********* *** **** ****, which *** ***** ****** have **** **** **,*** cameras, **** ***** * number ** ******* **** point ** *** ***** significantly *************** ***** ****** count:

  • ***** **** **,*** ****** businesses ** *** **** City, ********* ***** **** *****. ** ** ***** building ******* ** ********* had ******* *******, *** study ******* **** **** 1 ** *** * retailers ***** **** * single ******, ***** ** itself ** ***.
  • ********, ***** *** **,*** intersections **** ******* ****** in *** **** ************* ** *** ****. ***** ***** **** cameras ** **** *** signal ****** ***** ***** cameras *** **** ******.
  • ***** *** **** * million ********* ** *** York **** ********* ***** **** ****. *** ***** ** effectively ********** **** **** 1 *** ** *** buildings **** * ****** camera. **** ** ***** building *** *********** **** would ** * *** estimate.
  • **** ****** ****** *********** areas ** ******** *** observed ******* ** **** houses. **** ********* **** no **** **** */** houses *** ******* *** those **** *** ***** had ********, ** **** below:

IPVM Image

Study ********

******** ************** *****,****** ***, ********* ******** **** ******** ******** ****** **** ******** ******** *** ****** of ******* ************ ******* in ** ** ****** (Boston, *** **** ****, Chicago, ********** *.*., *** Angeles, *******, *********,*** *********, *********, *** Philadelphia) *** * ****** outside *** ** (*****, Seoul, *****, ******, *******, and *********).

**********

*** ******** **** **** they **** ********* ** a **** ** ******* data ** ************ ******* per ****, ************:

******* *** ****-******* ************ of ************ ******* ** public ******, ****** ***********, and ********** **********, ********** little ** ***** ***** the ******* ****** *** placement ** *******, ********* efforts ** ****** ***** impacts

***********

*** **** ******* * deep ******** ***** ** locate ******* ** ****** Street **** ****** *** ran ** ** ******** selected ********* ** ****. Humans ******** **** *** cameras ***** ** *** algorithm **** *******, *** false **********. ****, *** researchers ******** ***** ******** to ********** *** ****** detections (*********** ********** ***** found ** **.*%), ***** the ******-********* **** **** calculated ** ******* ***** algorithm ** * ****-******* dataset **** *******. *******, the *********** ********** ***** adjusted ******** ** *** proportion ** ***** **** had ******** ** ******** the ***** *** *** whole ****, *** **** the ********** **** ****** at.

Amnesty ************* ****** **%+ **** ******* ** ***

******* ****************************** **,***+ ******* ** New ********* ****** ****** **** images. ******* **** **** looked ** *********, *****, and ******** (***** */**** of *** **** **** residents **** ********* **** ****** ****), *** ***** ***** 50% **** **** *** Stanford **** *** ** all ** *** **** City.

Amnesty ************* ***********

******* **** **** ******** and *** *** **** signs ** ************, *** some ******** ******* **** counted. ******* *** * volunteers ***** *** **** Street **** ***** ** avoid ** ***** ****** by *** ********* *********** the *****.******* **** **** **** did *** **** ***** of ************ ** * post-study ******** **** ** "experts" *** ***** *********** analysis.**** ******** ******* **** counted, *** ******* **** the "*****" ******** ***** they *** *** "******" used.

Study ******* **** **** *** **%+ **** ******* **** **** ********

*** ***** ***** **** the *** **** **** Police ********** *** ****** to **,*** ******* ********* to ***** ***** **** *******, **+% **** **** the **,*** **** ********* in *** ** *** York ****, ********** **** the *********** ** **** study *** ** * significant *************:

** **** **** *** estimates ******* ****** *******, as **** ** ******* cameras *** ******** ** street **** ******. ******* due ** ***** ***********, our ******** ** **,*** cameras ** *** **** City ** ***** **** the **,*** ******* **** the **** ********** *** access **. [**** ***** **** ***** **** Article]

Claim ** ****** ****** ********** **** ****

*** *********** ********* **** the ****** ** ******* in *** ** ****** had *** ******* “*************” in *** *** ******* they ********, (****– ****) and (****–****) ***** **** does *** ******* [**** did *** **** ** change **** **** ** non-US ******]:

*** ****** ********* ** not **** ************* ******* the *** **** ******* we ******** (****– **** and ****–****), ********** **** the ************ ** ************ cameras ** ***** ****** may **** ******* * plateau.

*** *********** **** *** newest****** ****** ********* ** * ******** street ******* **** *** 2015 *** *** ****** between **** *** **** to ******** *** ****** in ****** ***** **** time.

IPVM Image

Cameras ********** *****, **** ** ****

************ ******* *** ***** and *** ** **** to *** **** ****** Street **** ****** ****** counting **** ***********. *** researchers **** ****** **** ~7 *** *** ********* that *** ******* **** 30-50 ****** ******. ** can ** **** ** this ******* ****** ****** View ***** **** *** York ****, ******* *** hard ** *** *** distinguish **** *****, ******, alarms, ***.

IPVM Image

Algorithm ******* ** ******* ****

*** ********* *** ******* using ******* **** *********** leading ** *************. *** researchers **** ******** *** ******** **** the **** ** *** Fransisco** ***** ***** ******** dataset. ** ******** ** least ***/*,*** ******* (**%+) that *** **** *** not ***** **** *** along **** *** ******* not ******** ** *** city. *** *********** **** that **** **** ***** 977 ** *** *,*** cameras ****** **** ******** to ** ******* ** hidden. **** ***** *** algorithm *** ****** ******* on ****** **** ********* cameras, ******* ** ****** detections.

Same **** **** ** ********* ****** ********* ****

*** **** **** *** used **** *********** *** missed ********* ****, ******* this *** ****** ************** as ****. ***** ********* but ****** ****** ***** not ** *********** *** in ***** ***** **********, causing **** ** ************* the ***** ****** ** cameras ** **** ****.

Only ****** ** ********, ***-******** *******

*** ***** *** *** look ** *********** ******* (like **** ** ****) or ******* **** **** not ******* **** *** Street **** ******. ******** cameras **** ** * substantial ********** ** ******* and ************* **** ******* *** enforcement*** ****** ***** **** these ******* ** **** cases. ****, **** ******* may **** **** ******** or ******, ******* *************.**** ****** *** ********** in *********** *** ********** residents ** *** ************ cities ***.

Minority ************* **** **** ************

*** *********** ***** **** in *** **, ***** with * ****** ********** of ******** ********* *** a ****** ******* ** cameras **** ***** *****, even ***** *********** *** land *** [**** **** analyzed *** ** ******]:

**** ** ***** **** higher ****** ** ***-***** residents. **** ************* ** cameras ** ********-******** ************* persists **** ***** ********* for ****, ******** ** the ********* ********* ******* of ************ ********** ** communities ** *****

*** *********** ******* "********" as ******* *** *** Hispanic ***/** *** *****, using **** **** ******* ******** ********* ******.

IPVM Image

Industrial, ********** ***** **** **** ******* **** ******, ***********

*** ***** ***** ******** US **** *** *** zoning ***********, ******* **** public *** *********** ***** had ***** ********* ****** densities **** ***** *****:

** **** **** ****** from *****, **********, *** commercial ***** *** **** likely ** ******* ** identified ****** **** ****** from ****** (**** ** parks *** ***** ****** facilities) *** *********** *****. For *******, *** ************** rate ** ***** ***** (2.1%) ** **** **** three ***** *** **** in *********** ***** (*.*%). This ******* ***** *** the ******** ** *** chosen ******.

**** **** **** **** the ***** ** ******* by ************ **** *** consistent **** ** **** although ***** **** ****** variations ** *** ***** values.

IPVM Image

Relative ******* ** ******* ********* ** *************, *********** ** *****

*** ******** ******* ** cameras ** ************ *********** or **** *** ****** be **** ********* ** undercounting *** ***** ** their *********** **** ***** estimates. **** ******* ******* the ********* ****** ** cameras ** *** **** of * **** ** another **** ** *** same ****, ** ** long ** ************* ** consistent ** ****** *** impact *** *****.

*******

*** ***** ******* * large ******* ** ******* and *** ********* *** lower **** ******* ************* and *** **** ******** to *** ***** ****, making *** ******* ************. However, ***** ******** **** neighborhoods **** * ****** percentage ** ******** ********* and ***** **** ********** or ********** ****** **** a ****** ****** ******* than ***** ************* ****** be **** ********* ** flaws.

Comments (6)

******** ***********...**** **** ******** on****** ****** **** ******** ******** *** ****** of ******* ************ ******* in ** ** ******

* ******* ******* ** this *****. ** ***** sole ****** *** ******** was ******* ****** ******* on ****** ****** **** then ******** ********* *** of **** *** **** is ***** ** ** useless. **** *** ************** both *** ********* ** deep ******** ********** *** the ************/******* ** ****** View ****. ******* **, garbage ***.

Agree: 1
Disagree
Informative
Unhelpful
Funny: 1

* ***** - ** best, **** ****** ****** views *** *** ** more ***** ***. *** example ** *** ******* was **** **** *** was ** **** ****** City, * ****** ****** - *** * ***** indicator *** *** ****** density. *** *** ****** zoomed *** * ***, he ***** **** ***** another ****** **** *** roll-door. ;-)

IPVM Image

Agree
Disagree
Informative
Unhelpful
Funny

*** ******* ** ********* is *** *** *** 1,100 ******* *** **** to ****.

*** ******** ****** ******* alone *** **,*** ******* as ******** ** **** and *******.

IPVM Image

******* ************ ****** ** my *******.

******:

*****://***.****.***/*******/*********/*******/******/******/********-****-****-****-************#:~:****=**%******%**%***********%********%******,*%*********%*******%****%********.

Agree
Disagree
Informative
Unhelpful
Funny

* ****** *** **** kickass **** ******** ********* would ******** ***** *** boys?

IPVM Image

Agree
Disagree
Informative
Unhelpful
Funny: 1

** **** ****** ** the ****** ****** ** video ************ ******* ** use ***** ****. ** assumed * ******* ******** for *** ******* ****** and **** ****** ** production ******* ** ****. The ***** ** **** up **** *** ****** and ******* ***** ************ cameras ** **** **** one *******. **** ******** study ***** ******** ***.

Agree
Disagree
Informative
Unhelpful
Funny

*** ***** ** **** up **** *** ****** and ******* ***** ************ cameras ** **** **** one *******. **** ******** study ***** ******** ***.

**** *****, ** ** reported, *** **** ******* at ******* ******* ** certain ****** *** *** cameras ****** *** ***** and **** *******.

Agree
Disagree
Informative
Unhelpful
Funny
Read this IPVM report for free.

This article is part of IPVM's 7,264 reports and 968 tests and is only available to subscribers. To get a one-time preview of our work, enter your work email to access the full article.

Already a subscriber? Login here | Join now
Loading Related Reports