Solar Surveillance Guide

Author: John Grocke, Published on Feb 25, 2012

Off-grid solar power is gaining attention for video surveillance. In this article, we examine what video surveillance applications are typically used with solar power, examine what key factors affect the design and cost of solar power systems, and look at example installations in different geographic locations to compare pricing and aesthetics.

Applications

What video surveillance applications is solar power commonly used for?

  • Remote locations where other power sources are not available.
  • Locations where power may be available but is not physically or economically feasible to be installed as compared to the cost of solar power.
  • Installations where fast deployment is critical.
  • Temporary or portable cameras that need to be moved to different locations.
  • Environmentally-sensitive locations or communities which are willing to absorb the additional cost of solar power in an effort to be environmentally friendly.

The Need for Detailed Estimation

Although some manufacturers are selling prepackaged fixed and mobile solar powered platforms for video surveillance, there is no “one size fits all” solution for solar power systems for video surveillance, which we will illustrate. There are simply too many critical elements that vary widely across geographies and application types.

Key Factors

We see 3 key factors impacting the use of solar in surveillance:

  • The cost of adding in solar: Solar can be quite expensive and be easily more expensive than the surveillance equipment itself.
  • The aesthetics of adding in solar: Between solar panels and enclosures for panels, many users may object to the aesthetics or logistics of adding a significant amount of equipment.
  • The variation of cost and aesthetics: Depending on the type of camera and the location deployed, the severity of cost and the aesthetic impact can range significantly.

Scenarios Examined

Given these factors and their variance, inside we examine a range of scenarios:

  • "Enterprise' Example - A professional D/N camera with a wireless mesh node
  • 'Critical Infrastructure' Example - Same as above but with IR illuminators for surveilling a pitch black environment
  • 'Low Power' Example - An IP camera with low power requirements.

We break down costs and aesthetic impacts for each. We also look at the variances of using solar surveillance in sunny places like Tucson vs rainy locations like Seattle.

Get Video Surveillance News In Your Inbox
Get Video Surveillance News In Your Inbox

Example #1 – Cameras + Wireless Mesh Node

For this example, two outdoor pole-mounted PoE fixed cameras and wireless mesh node are installed in a remote location requiring solar power. To begin the solar power sizing calculations, the system’s load needs to be determined: The wireless mesh node uses 12VDC input and draws 4A for a total of 48W of total power, (including powering the 2 PoE cameras), 48W x 24 hours = 1152 watt-days of total load. 

This table shows estimates for different locations with varying climates:

Looking at the table, areas with colder climates or more consecutive sunless days, additional equipment is required, which can increase price significantly. The Tucson system is less than 40% of the cost of Seattle’s due to the overwhelming disparity in hours of sunlight, battery efficiency and sunless days. The Tucson system required about 1/4 of the solar array capacity as compared to Seattle, but was just a little more than 1/3 of the price, which is not a linear scale.

Aesthetics

One common concern is the aesthetics of the solar arrays and battery enclosures. To get a perspective on the size of the solar arrays for the example installations, the below chart details their approximate dimensions:

Using a 4’x8’ sheet of plywood as a reference, the Tucson and Tampa solar arrays are less than one sheet in size, but the Seattle system is equivalent to almost 3 sheets of plywood. The following pictures give a good comparison of solar panel array sizes for different locations / climates:

We also calculated the estimated battery cabinet dimensions to compare aesthetics:

While the average battery for a solar power system is similar in size to what you would find in a large truck or golf cart, the example installations do not require enough batteries that a battery shed would be required. Compared to household appliances, the Tucson and Tampa system’s battery cabinets are about half the size of side-by-side refrigerator, the Kansas City and Albany system’s cabinets are n1early the size of a washing machine, and the Seattle cabinet is the size of a chest-type freezer. The above 2-panel array picture illustrates the cabinet size required for the Tucson and Tampa example systems. Below is a picture of the chest type battery enclosure for the Seattle system:

Example #2 – Adding IR Illuminators

Doubling the Load: The addition of two 45W LED illuminators (at 50% duty cycle) to our Kansas City example almost doubles our original system load. However, the calculated price of the solar equipment package is approx. $15,000, which is only about a 60% price increase. This will be approximately the same size system as our Seattle example above with the same solar panel array but fewer batteries.

Example #3 – Single Low Power Camera

Stand-Alone 5W Camera: Using our Kansas City example again and substituting one stand-alone 5W low power fixed camera (with internal SD storage that is not monitored and accessed manually), we have a total load of 120 watt-days, about 10% of our original load. However, the calculated solar equipment package price is $2,600, about 30% of the original price. With this low of a power load, this installation may be a good candidate to use a portable solar power system typically used for boating or camping that costs about $500, as shown below.

Calculations

For our examples above, we used a solar manufacturer’s calculation tool with the following technique/approach:

  • Locations were selected to obtain a sample from each zone of the insolation map.
  • The number of direct hours of sunlight, average low temperature of the coldest month, and battery efficiency figures are from the solar manufacturer’s calculation tables.
  • The calculated array watts and battery requirement figures are the results from the solar manufacturer’s calculation tool. Wattage calculations include a “harvest” factor.
  • Although AGM batteries are more efficient in colder climates, 102AH G 31-Gel size gel batteries were used in all installations for consistency.
  • Nominal watts figures reflect the closest pre-packaged solar kit from this particular manufacturer.
  • Estimated price is the MSRP for the solar equipment package only, and does not include installation labor.

Key Design Factors

The equipment’s electrical load is the biggest factor in the size and cost of a solar power system and the only one that the video surveillance designer has any measure of control over.

Load Reduction Suggestions

  • Evaluate different brands of equipment, comparing the power requirements listed in the manufacturer’s data sheets. Use equipment with the lowest overall power consumption.
  • Focus on selecting equipment that uses 12VDC input power and keep the voltage uniform for all devices, eliminating the need for transformers. 24 or 48VDC or PoE systems need transformers and matched pairs of solar panels and batteries.
  • AC powered devices will require a DC to AC inverter which adds cost.
  • Transformers or inverters add cost and inefficiency to system.
  • Use fixed cameras as opposed to PTZ’s whenever possible.
  • Try to use environmentally sealed cameras that do not require internal heaters or fans.
  • If nighttime surveillance is critical to the installation, consider using low light cameras instead of conventional day/night cameras and illuminators.

Approximate power loads of video surveillance equipment that might be used with solar power:

Insolation – Solar power systems are better-suited and more efficient in locations with more peak hours of sunlight and lower humidity as shown the darker areas of the below insolation map:

Solar power can still be used in lighter areas of the map but will require larger solar panel arrays, increasing the system cost.

Climate – In colder climates, batteries are less efficient and are de-rated in the battery sizing calculations. The estimated number of consecutive sunless days needs to be factored in the calculation so that the batteries will provide power during this period without receiving a charge from the solar panels.

Scalability

As we have shown with our examples, due to the variation in sizes of solar panels, charge controllers, batteries, insolation and climate, solar power systems do not scale very well. Do not try to extrapolate data or estimate costs and sizes based on the above tables. It is recommended that you contact a solar power system manufacturer to get an accurate design and estimate tailored for your particular application.

Summary

Although advances in solar panel and battery manufacturing technology and market competitiveness are steadily lowering the price of solar power systems, they are still widely considered to be expensive or not aesthetically pleasing for use with surveillance systems. They should be used when other sources of power are unavailable or are economically impractical, or when environmental concerns or camera portability requires their use. Minimizing the power consumption of the surveillance hardware will have the greatest effect on reducing the overall solar power system cost. Solar power systems are most cost-effective when installed in climates with greater hours of direct sunlight. As each installation is unique, solar power systems should be professionally designed and estimated for the specific load, location and climate of the installation, as the pricing does not scale in a linear fashion.

3 reports cite this report:

Wireless Networking For Video Surveillance Guide on Mar 29, 2018
Wireless networking is a niche in video surveillance applications, but it can be a difficult one to understand with proper wireless design,...
Portable Power for Video Surveillance 2016 on Jun 08, 2016
Sometimes you need power for your video surveillance equipment but do not have convenient access to mains electricity, such as: Demonstrating or...
Megapixel Solar Wireless (Micropower) Examined on May 12, 2015
A fully wireless professional surveillance offering, no networking cables, no power lines. That has been the goal of Micropower for 5 years....
Comments : PRO Members only. Login. or Join.

Related Reports

Alexa Guard Expands Amazon's Security Offerings, Boosts ADT's Stock on Sep 21, 2018
Amazon is expanding their security offerings yet again, this time with Alexa Guard that delivers security audio analytics and a virtual "Fake...
BluePoint Aims To Bring Life-Safety Mind-Set To Police Pull Stations on Sep 20, 2018
Fire alarm pull stations are commonplace but police ones are not. A self-funded startup, BluePoint Alert Solutions is aiming to make police pull...
Amazon Ring Spotlight Cam Tested on Sep 17, 2018
Amazon's Ring has released their latest camera entry, the Spotlight Cam, which we bought and tested in our Consumer IP Camera Analytics...
IP Camera Cable Labeling Guide on Sep 14, 2018
Labeling cables can save a lot of money and headaches. While it is easy to overlook, taking time to label runs during installation significantly...
VMS Export Shootout - Avigilon, Dahua, Exacq, Genetec, Hikvision, Milestone on Sep 13, 2018
When crimes, accidents or problems occur, exporting video from one's video surveillance system is critical to proving incidents. But who does it...
Door Fundamentals For Access Control Guide on Sep 12, 2018
Assuming every door can be secured with either a maglock or an electric strike can be a painful assumption in the field. While those items can be...
IP Camera Cable Termination Guide on Sep 06, 2018
Terminating cables properly is critical to network performance, but it can be a tricky task with multiple steps. Fortunately, this task is easy to...
Drain Wire For Access Control Reader Tutorial on Sep 04, 2018
An easy-to-miss cabling specification plays a key role in access control, yet it is commonly ignored. The drain wire offers protection for readers...
IP Camera Cabling Installation Guide on Aug 29, 2018
IPVM is preparing the industry's first Video Surveillance Installation book and our upcoming Video Surveillance Installation Course. We have...
Exit Devices For Access Control Tutorial on Aug 28, 2018
Exit Devices, also called 'Panic Bars' or 'Crash Bars' are required by safety codes the world over, and become integral parts of electronic access...

Most Recent Industry Reports

Alexa Guard Expands Amazon's Security Offerings, Boosts ADT's Stock on Sep 21, 2018
Amazon is expanding their security offerings yet again, this time with Alexa Guard that delivers security audio analytics and a virtual "Fake...
UTC, Owner of Lenel, Acquires S2 on Sep 20, 2018
UTC now owns two of the biggest access control providers, one of integrator's most hated access control platforms, Lenel, and one of their...
BluePoint Aims To Bring Life-Safety Mind-Set To Police Pull Stations on Sep 20, 2018
Fire alarm pull stations are commonplace but police ones are not. A self-funded startup, BluePoint Alert Solutions is aiming to make police pull...
SIA Plays Dumb On OEMs And Hikua Ban on Sep 20, 2018
OEMs widely pretend to be 'manufacturers', deceiving their customers and putting them at risk for cybersecurity attacks and, soon, violation of US...
Axis Vs. Hikvision IR PTZ Shootout on Sep 20, 2018
Hikvision has their high-end dual-sensor DarkfighterX. Axis has their high-end concealed IR Q6125-LE. Which is better? We bought both and tested...
Avigilon Announces AI-Powered H5 Camera Development on Sep 19, 2018
Avigilon will be showcasing "next-generation AI" at next week's ASIS GSX. In an atypical move, the company is not actually releasing these...
Favorite Request-to-Exit (RTE) Manufacturers 2018 on Sep 19, 2018
Request To Exit devices like motion sensors and lock releasing push-buttons are a part of almost every access install, but who makes the equipment...
25% China Tariffs Finalized For 2019, 10% Start Now, Includes Select Video Surveillance on Sep 18, 2018
A surprise move: In July, when the most recent tariff round was first announced, the tariffs were only scheduled for 10%. However, now, the US...
Central Stations Face Off Against NFPA On Fire Monitoring on Sep 18, 2018
Central stations are facing off against the NFPA over what they call anti-competitive language in NFPA 72, the standard that covers fire alarms....
Hikvision USA Starts Layoffs on Sep 18, 2018
Hikvision USA has started layoffs, just weeks after the US government ban was passed into law. Inside this note, we examine: The important...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact