Single Frame Gait Recognition From Michigan State and Osaka University Examined

By Zach Segal, Published Oct 01, 2020, 10:23am EDT

Gait recognition has the potential for accurate identification at a distance, even without seeing the face but suffers from a number of limitations. Single frame gate recognition is an alternative approach that aims to improve on these.

IPVM Image

IPVM spoke to researchers from Michigan State University and Osaka University that seeks to solve these problems that we addressed in our gait recognition review.

Executive *******

*** ******** **** ******** State *** ***** ********** aims ** ******* ******** accuracy **** ***** ****** common ** ****-***** ************ with ************* ******* ************* load *** ******* ************.

*** ******** ***** **** approach ******* ** **** shape *** ********, ******** clothing, *********, *** ******** conditions. *** ***** **** tried *** ******* ********* and **** ******* * model **** **** *** frame ** ******** ** entire **** ******** ******** for **** ********** ** single ****** ***** ** different ****** ** * gait *****. **** ***** told **** **** **** believe ***** ** ******* techniques *** *** ****** of *** ***** *** that **** ***** ******** the ****** ** *****/*********** variables **** ********, *****, carried *******, *** ****** angle **** **** ******* traditional **********.

Why ***** **********?

****** *********** **********, ***** new **** *** ****** networks *** *** ** done ** * ****** frame, ****** **** *********** more ********, **** *************** intensive, *** **** ** work ** ********** ***** limited ******* *** ********.*********** ***************** * **** **** cycle, **** *** ***** steps (~* ****** ** footage). **** ***** **** computationally *********, *** *********** in *** **** ***** where ******* ** ***** interrupted ** ***** ******, shadows, ******* ******, ***. They **** *** **** sophisticated ******* ******** **** relies ** **** ***** intuition, ******** ***** *********.

IPVM Image

MSU **** ******* ***-**-*** *************** *********

IPVM Image

*********** ***** ********** ***-**-*** ****** **** separated/disentangled**** ** ****** ** algorithm **** **** *** is **** ******** ** certain ****-***** **********, *** be *** ** ****** frames, *** **** **** say *** **** ********* than **** *** *****-***** approaches.*** ********* ***** ** splitting/disentangling *********** ********** ****/***** (**** clothing), *********/****** **** (**** posture *** ***********), *** pose/dynamic **** (**** ******* style). ** **** ******* the ********** **** *** averages *** ********* **** from **** *****. ****, the ********* *** **** data *** **** *** matching. *** ********* **** is ******** ** **** frame, ** *** ********* can **** **** ********** accuracy ** * ***** instead ** * **** cycle (~**% *****). *** algorithm ********* ********** **** overall ** ******* (~**% in ****** ********** *** 88% **** * ***). Importantly, ***** ********* *** not ******* ******** ** changes ** ********** *****, even **** ****** *** camera ***** ** ********* how ************ ******* *** set ** *** * challenge *** **** **** algorithms.

********* ***, **** *** ******** State ****, ********* ** IPVM **** *** *** similar ********** **** **** promise **** *********** ******* because ** ** ***-**-*** and **** ********-***** ******* of *****-****. *** **** IPVM **** *********** ** lost **** *** *** or ***** ** *******, leading ** ****** ** accuracy, **** *** ********* will *** ****** ******* it ** * ****** step. ***********, *** ****** lets *** ******** ****** what **** ** *********** is ********* ******* ** deciding **** **** ** important *** *** *********. This **** *** ******** optimize ***** ****, ******* of **** ******** ***** on **** ****** ******* is *****. *** **** not ******* ********** ** model-based ********** **** ** able ** ***** ********** accuracy ******:

* ** *** ******* silhouette ***** ******* *** achieve **% **** ********* rate **** *.*% ***** alarm ****.

** *** ** **% TDR ** *.*% *** on * ****-******** **** set, ** **** ** improve ***[*****-**-***-*** ***** *****] performance ** ** ***** 100 *****. * ** not ***** *****-**** [**] can ***** **** ***** of ********* ***********[*** ***** or ********** *****].

OU **** **** *************** *** * ******** ***** ******** *********

******** ********** ******* ********** **** ******************* *** **** ***********, but *********** **** * **** learning ************ ******-***** **** *** used*************** ******* ***** ******** ***** *** with **** ********.**** *** **** ********** ******** *** ***** of * **** ***** a ***** ** ****, then ******** * **** cycle **** **. **** allows **** ** ******* frames **** ********* ****** in * **** *****. They ******** ****** ******* than ***** ***-***** ********** and **** **** ** achieve **% ******** **** 1 ***** ** ******* datasets (******* *********** *********).

IPVM Image

**** **** ***** ********* ******* ***************/********** ********* ***** of ****, *** ******* of ******* **** *** footage, **** **** ************ GEI ******/***********. **** ***** their ********* ** ********** covariate ****/***** **** *** useful **** *** ************** led ** ******** ***********. On *** ***** ********** large ********** **** *** with **** *** ****** horizontal ******, **** ******** 86% ********, * **% jump **** ******** ********** (note *** ***** ********** databases *** ***-********* **** so *** ******** ***** team’s ********* ****** *** them *** *******). **** also ******** ******** *********** on *** *****-*, ******* 100% ******* ************** ** normal *** *** ******* individuals *** **% ** coat-wearing ********. **** *** aided **** ** *** use ** *************** *** deep ******** ** **** as *** ****** ** data *** *** ***. While **** *** *** analyze ********** ******, *** technique ***** ** ******** for **** ***.

IPVM Image

********** **** *** ******** of *** ***** **** were **** ********** **** Professor ***, *** ***** believed *********** ********** *** not ** **** ** perform ********** ****** *** real-time *********** ** ****-***** scenarios:

*******, ** *** **** situation, ** **** *** yet ******* **** ******** [95% **, **% ***** Positive].

**, ** **** ** handling **** ********* ****, 95% **** ********* **** with *.*% ***** ***** rate ****** ** ** possible. *******, ***** ************ multiple *******************, ** ** ***** challenging.

**** ********* ** **** that ******** ********** **** traditional ********** ******* ** deep ******** *** **** advanced ******* ******** ***** limits ********:

** ******* *** **** learning-based******* **** **** ********* than *** *********** ******* learning-based******* ** **** *********** community ********* ** ***** computer ************** *****.** ****, ** **** already **** **** **** on **** *********** ***** on**** ********, *** **** their *********** ** *** traditional *******.

Commercialization ***********

***** ******* **** *** plans ** *************, ***** University *********** ****** **** the ******** ******, ***, separately, *** ** ********** may **** ** ********.

********* *** **** **** he *** ** ******** in *************** *** ******** a *** ** *********** like *** **** **** academic **** ******** *********:

******* *** *** ********** through ********** ****** ********. But **** **** ** put ** ****** ** the ******** *** *********** side, ** ***** ** push ********** ** *******/******. Often **** ******* *** too **** **** *** research/technology *** **** ** energy *** **** ****

*******, **** **** ****** on ** ************** **** the ******:

******** *** ************** ***, our **** ************ ****** for ******** ************* *** been ***** ***** *** at *** ******** ******** Institute ** ****** ******* since ****. ** **** made ****** ****** ********* so *** ********* ** the ******** ****** ********.

*****'********* ***** *** **** company ** **** ***** selling **** *********** **********, but ****.*. ********** ** ********* to **** ********** ************** ********* *********** ** a ********, ***** ***** spur ***************** ** *** technology. ** ********, ********** mask-wearing *** ********* ******** over **** *********** *** lead ********* ** ***** into **** ** ** alternative ** ********** ** face ***********.

Comments (0)

Read this IPVM report for free.

This article is part of IPVM's 7,250 reports and 966 tests and is only available to subscribers. To get a one-time preview of our work, enter your work email to access the full article.

Already a subscriber? Login here | Join now
Loading Related Reports