Proximity Card Vulnerabilities

By: Brian Rhodes, Published on Aug 22, 2012

Even though it is the most common credential in access control today, proximity cards face notable security problems. The effort to move end users to newer card technologies is no accident; technology vendors are not only trying to sell new readers, but they are trying to mitigate the risk inherent in every single one of these older cards.

What are these risks, and what can be done to make them more secure short of overhauling all the readers and cards in an access control system? In this note, we dig in to this issue and provide our recommendations.

Weaknesses

It is surprising for some to realize that 'proximity cards' have been in use for over 30 years. Like many technologies, the more widely it is used, the less protected it becomes against exploitation. After so many years, the methods of compromising proximity cards are common knowledge:

  • Easy to Spoof & Clone: the Internet is full of websites [link no longer available], videos, and ready-to-build kits designed to illegally copy or duplicate credential cards.
  • Easy to Intercept: This is a specific element of spoofing, that introduces a 'passive reader' near a security card reader that scans cards as they are presented. Unlike 'contact credentials' or short-range proximity technologies like NFC, proximity cards can be read without card holder knowledge by fifty or more feet away. Activities like spoofing and cloning can happen without the end user ever being physically separated from their credentials.
  • Widely Available in Distribution: Obtaining 'blank' proximity cards is easy and cheap [link no longer available]. If an unauthorized user knows just a few basic details about the cards in use, they can procure 'exact matches' of active cards at most facilities with little effort. While mechanical keyblanks are commonly available, they still require additional cutting before being used improperly. In many cases, buying exact copies of active cards is less difficult.
  • Credentials Often Not Securely Stored: While end users never leave keys or wallets unattended, credential cards are often hung from lanyards around rear-view mirrors or stuffed into duffel bags after work, and can be easily stolen or 'read' for the purposes of cloning. Cards are commonly lost or misplaced and many users do not recognize the security vulnerability introduced when this happens.

The Scope of the Threat

Since it's introduction to the security market in the 1980's, contactless RFID has been the standard method of delivering credentials into physical access control systems. Not only do users find Proximity (Prox) Cards easy to use - wave a card in front of a reader - it requires special equipment to read or emit the information it uses. However, the security was largely assured by 'security through obscurity'.

While the technology is still fairly uncommon, it is by no means 'protected' or 'restricted'. An individual with a modest amount of proximity card/reader knowledge can find a number of exploits and procure equipment to take advantage of them. In recent years, a sure way to be noticed at hacker conventions, electronic hobbyist projects, or to have an engineering paper recognized [link no longer available] is to publish methods on how cheaply and easily prox card weaknesses can be taken advantage of. However, despite the buzz, most of these methods remain out of the reach of common criminals.

Really a Problem?

Evaluating these vulnerabilities in terms of actual risk is difficult. It is unlikely that an individual intent on unauthorized entry will be patient enough and have the specialized knowledge required to take advantage of these exploits. Very few examples exist in the public domain of someone entering a facility via Prox card vulnerabilities, and most end users may still find their biggest access risk comes from guys with sledgehammers less sophisticated threats. A risk assessment simply reveals that the chance of someone spoofing or cloning an access card is unlikely and security is not practically effected.

However, many government and 'high security' installations find prox card vulnerabilities too big and expensive to defend against. Security protocol in these facilities means active risk mitigation must take place as soon as it is recognized. In many cases, this means that proximity cards have been prohibited from use in those facilities. For example, with the advent of HSPD-12, the US Government has adopted FIPS-201 PIV standards that eliminate use of prox cards entirely, in part to eliminate these vulnerabilities.

Mitigating the Risk

Manufacturing often suggest replacing reader with new technology, and even incentivize doing so. For example, iClass is cheaper than Prox II. However, massive credential and reader replacement is not always necessary to increase the security of a system. For those end users not in position to pay for upgrades, here are some practical steps to consider with existing equipment:

  • Two-Factor Authentication: A simple step to take follows the "Something You Have AND Something You Know" verification path. In real terms, this means requiring both a card credential and a PIN to access an opening. While the next effect might be slowing down the credential process, it condenses spoofing or cloning a card only half the effort needed to gain access.
  • Tighten down Access Levels: This is an often overlooked, but perhaps most critical aspect, of managing an electronic access control system. This step requires configuring the system to permit card holders access only during certain times and on certain days. In other words, first-shift employees only have access during first shift periods on workdays, and so on. Rather, many access system managers 'balance' the matter of convenience versus security by simply permitting a card holder access any time on any day. However, while tightening down access permissions may increase inconvenience during 'non-standard' circumstances, it can significantly increase overall security by reducing the utility of faked access cards.
  • Use uncommon 'facility codes': A critical piece of information most access systems use to define credentials is the 'facility code'. Most systems require this code to be a certain value in order for a card to even be 'read' by the system. However, many end users do not realize the importance of this code, and just use whatever their system is defaulted to use. In the same way that a 'restricted keyway' limits the number of keyblanks that can be used to make a illegal keys, using a unique set of 'factory codes' limits the potential number of blank prox cards to use against a system. While this step will not prevent sophisticated spoofers from reading this code, it is easy layer of security to add to these systems.
  • Layer Video Surveillance with Access: Aside from the value of having visual records entry to a facility, adding cameras at doors, and integrating video with access systems will reveal tampering and unauthorized entry attempts. Even the most sophisticated exploits may take more than one effort, and validating entry records against specific people can uncover problems before they become serious.
  • Encourage carriers to treat credentials as keys: Many credential carriers see cards as a picture ID badge rather than an opportunity for someone to gain unauthorized access. In the same way that users would not store key rings in an insecure manner, it is important to reinforce prox cards in a safe, secure spot when not being used. Stressing the importance of keeping prox credential badges on their person or securely stored at all times will significantly reduce the risk of unauthorized entry.

1 report cite this report:

Paxton Access Control Company Profile on Dec 07, 2015
This note profiles access company Paxton, our 3rd installment in an ongoing series, following our profiles of Tyco Kantech and DSX. Inside we...
Comments : Members only. Login. or Join.

Related Reports

How To Troubleshoot Wiegand Reader Problems - Inverted Wiring on Jul 16, 2019
Wiegand is the dominant method of connecting access readers, but problems can arise for installers. In fact, one of the most difficult reader...
Contactless Access Credentials Guide on Oct 29, 2018
Contactless credentials are the most common component used in an access control system and while many look alike externally, important differences...
Default Passwords Outlawed in California, US To Follow on Oct 09, 2018
A new California bill aimed at improving security for connected devices has been signed into law. The law takes aim especially at passwords on...
Free Online NFPA, IBC, and ADA Codes and Standards on Jun 27, 2018
Finding applicable codes for security work can be a costly task, with printed books and pdf downloads costing hundreds or thousands. However, a...
Axis: Use QR Codes Instead of Access Cards on Sep 12, 2017
Innovation in access may be hard to find, but Axis recently suggested an idea for credentials few have considered. Rather than using plastic cards,...
Anti-Hack Access Card Shields Tested on May 26, 2017
Keeping your access control card information secure is becoming a big priority, especially since cheaper copiers can hack details easily. Multiple...
Keypads For Access Control Tutorial on May 31, 2018
Keypad readers present huge risks to even the best access systems. If deployed improperly, keypads let people through locked doors almost as if...
Replacing / Switching Access Control Systems Guide on Jun 28, 2018
Ripping out and replacing access control systems is hard for important reasons. Because users typically hold on to access control systems for as...
Axis Releases Access Credentials - Insecure But Convenient on Nov 02, 2016
Axis continues to build out their own end-to-end 'solution'. The company recently announced a series of credential cards, but instead of a...
Vulnerability Directory For Access Credentials on Feb 20, 2020
Knowing which access credentials are insecure can be difficult to see, especially because most look and feel the same. Even insecure 125 kHz...

Most Recent Industry Reports

Avigilon ACC Cloud Tested on Jul 08, 2020
Avigilon merged Blue and ACC, adding VSaaS features to its on-premise VMS, offering remote video and health monitoring that was previously limited...
The US Fight Over Facial Recognition Explained on Jul 08, 2020
The controversy around facial recognition has grown significantly in 2020, with Congress members and activists speaking out against it while video...
Sperry West / Alibaba Tablet Temperature Measurement Tested on Jul 07, 2020
In April, we ordered a ~$500 temperature tablet from Alibaba. We set it to the side while doing 18 other temperature screening tests but, after...
Facial Recognition: Weak Sales, Anti Regulation, No Favorite, Says Security Integrators on Jul 07, 2020
While facial recognition has gained greater prominence, a new IPVM study of security systems integrators shows weak sales, opposition to...
Video Surveillance 101 Book Released on Jul 07, 2020
IPVM's unique introduction to video surveillance series is now available as a 145-page eBook. Designed for managers, salespeople, and engineers new...
Startup Duranc Presents AI VSaaS on Jul 06, 2020
Duranc presented its system at the May 2020 IPVM Startups show. A 30-minute video from Duranc including IPVM Q&A Background on the...
Low Voltage Nation Wants to "Help You Carve Out A Fulfilling Career" Interviewed on Jul 06, 2020
It is difficult to make your way in this industry as there is little formal schooling. However, one person, Blake Urmos, the Founder of Low Voltage...
The Next Hot Fever Detection Trend - $100 Wall-Mounted Units on Jul 06, 2020
The first wave of the booming fever detecting market was $10,000+ cameras, now interest for ~$2,000 tablets is high and the next big thing may be...
Cisco Meraki Unlocks IP Cameras With RTSP Tested on Jul 06, 2020
Meraki opened up its cameras to 3rd party NVRs/VMSes by offering RTSP streaming because of "the need to solve a business problem". We tested...