Bias In Facial Recognition Varies By Country, NIST Report Shows
By Zach Segal, Published Jul 15, 2020, 12:17pm EDT
While many argue that face recognition is inherently racist, results from one of the most extensive studies done on demographic bias in AI, the Facial Recognition Vendor Test (FRVT) Part 3 by the National Institute of Standards and Technolgy (NIST) analyzing over 100 algorithms, has shown that bias varied across the country of development.
In particular, they observed that several algorithms developed by China groups performed better on East Asian faces than Eastern European faces while the vast majority of algorithms performed Eastern European faces than East Asians.
Executive *******
***** **** **% ** western ********* ********* ********** that ********* ****** ** Eastern ******** *** **** East ***** **** (***** 10-100 ***** ******), ~**% of ***** ********* ********* algorithms **** ********* ****** on **** ***** *** than ******* ******** ****.
**** ****** ******* ** all **** ***** *****, although *** ** ********, with ~**% ** ********** developed ** **** ***** groups ********** ****** ** Eastern ***** ***** **** European.
Training **** *****
**** ********* ** ***** of ****** ******** ****:
**** ******** **** ******** data, ** ******* **** other ****** ********* ** the ***********, *** ** effective ** ******** ********** false ******** *************. ****, the ******-**** ********** ***** be *** ********** ** investigate *** ******* ** more *******, ******** *******, training ****.
*******, **** *** *** an ********** ******** ** establish ***** *** **** did *** **** ** training ****. ***, **** result *** *** **** with ***** ***** ****** performance ** ***** ***** faces, ** ******* ****** may ******* *** *******.
****, ***** ** *** NIST ********* *******:
Study ********
**** ****** **** *********** disparities ** ****** *********** algorithms ** ***** ****** facial *********** ****** ****, analyzing ********** **** **** 100 ******. *** ****** of ***** ****, ***** we **** ***** **, they ******** *** ********** in ***** ***** ***** (FMR) ** ****** ***** from ****-******* ** ***** Department *********** ******** (***/*** 39794-5 **************). ** ******* of * ***** ***** would ** ** * friend ******** **** ****** using ***** ****, ******* of *****. ** **** case, **** ******** ***,*** visa *********** ****** **** 441,517 ********* *********** ******, selecting ****** *** ******** to * ****** ** countries ****** *** *** historical ***********. *** **** researchers **** **** ***** of *** ****** ** false ******* **** ******** (all ******* **** ***** because *** **** **** disjoint).
**** ***** *********** ** false ***** *****, **** false ***** ***** ****** in ******* ********* (******, Ukraine, *** ******) *** highest **** **** ******** and **** ****** (*****, Japan, *****, ***********, ********, and *******). *******, *** study ***** ****
**** * ****** ** algorithms ********* ** ***** this ****** ** ********, with *** *****-******** ***** on **** ***** *****.
******** **** ******** **** or ********* *********** ***** be ****** * *** of *** ****** *** ethnic **** ******* ** most ** *** ********** they ******.
How ** ********* *********** ***********
***** **-*** ***** **** accurate *** *. ********* than *. ******, ****** like * ***** **********, this *** ** **********. The *********** ** ********** can ** **** (**** algorithms *** ***** ***** of ~.***** *** *. Asians *** ~.****** *** E. *********), *** ** some *****, *, ** close ** * ****** would ** ********. ** an ********* ** **** for ************/*:* ********, **** as ***** ****** *********** to ****** **** ******, mistakes ***** ** ********** infrequent *** *** ********* would ** ****** ************. However, ** **** *** identification/1:n *********, **** ** scanning ** **** *** anyone **** ** *********** warrant, *** ***** **** increases ************* **** *, and *** ********* *** have * **** ****** (even **** **** ***) if * ** ***** enough.
***** *** *** * agree. ** ** * very ********* ***** *** only ******* **** ********.
Agree
Disagree
Informative
Unhelpful
Funny
Create New Topic
Read this IPVM report for free.
This article is part of IPVM's 6,904 reports, 921 tests and is only available to members. To get a one-time preview of our work, enter your work email to access the full article.
Comments (6)
John Honovich
****, **** ***!
***** *** **** ****** was **** * ****** ago, ****, **** ****, is ******* ** **** coverage ** ****** *********** technology. *** *********** *** topics ** *****, ****** share.
Create New Topic
Salvatore D'Agostino
** **** ******* ****** out *** **** ****** did *** **** ** training ****. ** *** FR ******** ************ ******* on ******* ********, **** is ***** ****** ***** seem ** ** **** and **** ********. ******* a ****** **** **** training **** *** ******* a **** ** **** is *** ***** ** open ****** ****. **** will, ** ** *******, be ** *********** ***** to ****** **** ** not **** *** ****** to ***** **** ****** acquisition *** ******** **** becomes * *** ******** block ** ******** *** also *** ****** ** which **** ****** ******** sets. *** *********** ****** in **** ******** *** the ******* ************** ****** amassing * ***** **** set ** ******'* *****. This ***** ** *** question **, ** **** extent ***** * ********** training *** ** ******* that ***** ******* *** challenges ** *********** *** bias.
Create New Topic
Salvatore D'Agostino
** ****, ***** *********. I **** *** ****, its **** ******. ***** is * *** ***** on ***** *** ****** the ** *** *****. My ***** ** ***** will ** * *** more ** **** ** this *****. ******* **** is ******** ** ******* AI, *** **** * human *********** ***'* **** this ***** ** *** fore. ***** ** **** interesting ******* **** ** de-identification, *** ***** ******* related *******.
Create New Topic