Multi-Camera Tracking Works?

Author: Carlton Purvis, Published on Jun 27, 2013

Being able to track people across cameras and buildings simply by using cameras and analytics is something of a 'holy grail' for the surveillance industry.

Two researchers from Carnegie Mellon University have developed just such a system that allows them use surveillance cameras to track a person's movements throughout a building, even when they are out of sight of the camera. The set-up combines three different datasets that allow them to tag and identify people and place their movements on a map. In this note, we interview one of the researchers and breakdown how the system works.

**** *****************-* *********** **** ******** ******* **** ******** **** ** **** *****-****** tracking ******* ******* ** ***** *** ****** **** * ****** view ** *** ***** ***********, ***** ** *** *** **** in **** ************ ***********. **** **** ********** ********** ** ************ tracking ****** ** “******* ****** ************.”

*** ***** **** **** **** ***** ** * ******* **** in ****, **** ****** ********* (*** *** ****** ****** *****), many ***** *** * ******** ****** ** **** ******* ****** the ***. ********* *** ** ***** **** **** ***** ************ track ******, **** ******* ****** **** ** ********* **** **** clothing, ********** *** ****** ***********. *********** *** **** ********* **** ****.

*** *** **** *****:

********* ****:

  • *********** ********** ******* **** ***** ********. *** *** ***** *** ******* ranged **** ** ** ** *******.
  • *** ****** *** ***** **** ******* -- “** ******* [*******] into ***** ** ** *** ******, *** **** ** ** a ******. ******** *** ***** **** **** *** ******** ** the ******* *** ** ****'* **** ****," ********* ****.
  • ******** ****** *********** ******** (****** ** ********* ** ******)
  • * ******** ********* ******* ** ******* ******** *****, **********, * pre-loaded ** *** ** *** ********, *** ****** ***********.

********* ****, “** ****’* ******** **** **** [*********] ** ******* facial *********** ** ****** ********* ** **** ** ********, ** recorded ** ** **** * ********** ** ******** (*******), *** this ** **** ** ***** ** ****. *** **** ***********, it ****** ********** ****.” **** **** **** ** ***** * subject ****** *** ***** ** ******* ** *** ****.

Multiple **** *******

******** *****

“******** *** ***** ***** *********** **** **** ********** ******** ******** switches **** ******** ****** **** **** ***** ******** *** ***** up. ********** ***** *********** **** **** ** ************** ********* ******,” according ** ***** ***** ******. *********, ***** *** ***** ******* data ********* ** ***** * ****** ********** *** ********.

******** ******* ****** ****** ** ****** ******* ** ****** ** different ******* ** *** ****** *** *** ** ****** ******* to **** ***** *** ***** *************. ** ** ****** ****** a ******* *****, *** ****** ***** ***** ********* **. ******* frequent ******* **** *** ******* **** ********* *** **** “**** don’t ***** ** *********** ********* ******,” ********* ****. ***** **** of *** ********* **** ******* ******* ******, ****** *** ****** a ********* ** ************** ******* ****.

** **** ***** *** ********* ***** *** ********** ** “******” it *** *** **** ****** ** ******. “******* *** **** in ** ***** *** ***** *** ****** **, *** *** camera **** ‘** *’** *** *** ****** ** **** *** I’m ****** **** ***** ************* *** **** ****** ***.’" ** two ****** ******** ** ****** ******* ******* ******, *** ********** component ***** **** ** *** ** ******** ****** *** **************. They ***** ***** * ****** ********* ********** -- * ****** cannot ** ** *** ****** ** *** ****.

**********

********** ********** ***** ** *********** ** ***** * ****** ****** be, ***** ** ***** ********* ** ******, * ** ************ of *** ******** **** *** ********* “****” *** ***** *******. Even **** * ****** ** *** ************ *********** ** * person, ** *** *******, *** *** ***** *** ** * person ** ** *** ******** **** ** * ****, ********* by * ****** *******. ************ ******* **** ***** ******* **** were *******. *** ********** ***** ** *** ***** ***** ** corridors **** ******* ** *** ******.

***** ****** **** *** ******** **** ****** ** *** ****** views. *** ****** ******** **** ***, *** ***** ** ********** based ** ***** ****** ***** *** *** **********.

****** ***********

****** ********* *** ********* **** ** ********** ******** **** * person ***** *** ** ********** ** ******** ***** ** ********* trajectory. ** *** **** *** **** **** ********* (****** ***** six ******* ** ********* * ****). ************ **** ****** ****** were **** ******** *** ***** **** *****, *** ******* “**** of *** ******** **** ***** ****** ** ** **** **** walking **** **** ***** ******* ****.” **** ******* *** *** a ***** **** ** * ******’* ****, **** **** ***** verify **** ** *** *** **** ****** ******** ** ********** and ******** *****.

“*** **** ** [****** ***** ****** ***********] *** *** **** high *** ***** *** ****** *********** ****** ** ** *** us **** ** *** **** ****** *****,” ********* ****. **** 10 ******* ** *** ** *** ***** ****** ********* ******** usable ****** ***********, *** “** ******** * ********* ** ***** correction **** *** ****’* *** *********. ******* ****** *********** *** system ***** ***** * ****** ****** *** ***** ** ******* of *** ****. *** ********* ***** ****** *********** *** **** to ***** * ****** ****** *** ***** ** ******* ** the ****.

** *** **** ** ** ***** ********* *** **********, ** a ****** ***** ** **** ********, *** **** ****** ** chance ** **** ***** ** ****. *** ****** *********** ***** us **** ** * ********** **** **** **** *** ** be **** ****** **** ***** ***.”

*** *********** **** ******* **** *** ********* ** “*** ********* in **** ******* ********* ***** **** ****** ***** *** **** color *******,” ********** ******* ** ****** *********** **********, ** ******** trajectory (****** ****** *** ****/*** *********** ** ******** * ****) and *** **** ** *** **** *****.

**** ******* ***** ******* **** **** ** *********** ****** *** ******* *********** **********.

Future *****

"** **** ******* ******** *** ********* ************* ******* – **** project ** ******* ** ***** ** ****** *** **********. ********* there *** ** ******** ***** ** ****** *** *****. **** would **** * *********** ****** ** *********** *** *******," ********* said.

***** *** ** ***** ** ************* *** ******** (********* ** university ****** ** ** ***** ** *** ******** *** *** university), *** ** ***** ** **** ********* *** *********, ********* says.

IPVM ********

********* **** ******* ***** **** *** *********** **** *** ** mind **** **** ******* ***** ********. *** ******** ****** ***** be * *** ** **** **** ** ******** *** ***** wander *** ** ** **** ***** ****** *** ** **** of * ******* *********. **** ********** ***** ** ********** ** environments **** ******** ***** ***** ****** **** ** ** ********* for ****** *** ****** *******, *** **** ** **** ******** areas. *** ***** *********** ** **** **** **** ** **** was ****** ********** **********. *** **** ****** *** ******* *** spent ******** ** ****** ** ****** ******* ** **** *** is ***** ** **** ***** ** *** ********. *********'* ********** could **** **** ********** ******* ** **** ******* ***** **** are ** * ********, *** **** **** ****'* ****'** **** through. ******* ********** ** ************** ** ******* ************** ***** ** ****** ** ******* *** **** ***** ***** environments ** ***** * ****** ** ********.

** *** ******** ****, *** ***** ******* ** ****** ******** - ** ****** * **** ***** *****, ******** *********** **** and ********** ***********.

*******, ******** ****** *** ***** ********** **** **** *** ***** conducted ** ****, ** ** ***** ** *********** ** *** how **** ***** ***** **** *** ** ********** ** **** with ******* ********** *** ****** ********** *****.

Comments (3)

***'* **** **** ****** ******* ** ***?

**** ********* *** ************ *** ***** ******* ...

***** **** -*****************.***- (**** *'** ***** ***** **) ***** ** **** ** operational ***** ** *****-****** ********.

********** **** *** ***** ** *** ****** **** *****:

Login to read this IPVM report.
Why do I need to log in?
IPVM conducts unique testing and research funded by member's payments enabling us to offer the most independent, accurate and in-depth information.

Related Reports on Facial Recognition

Face Recognition Camera Tested (Netatmo) on Jan 29, 2016
Can face recognition make home security "better"? That is the bold claim from startup Netatmo with their Welcome camera. But with face...
Simplicam Facial Recognition Tested on Jan 23, 2015
Facial recognition, available for $150? That's the offer from a startup, Simplicam, who has not only cloned Dropcam setup and user interface but...
Japanese Stores Facial Recognition Sharing on Apr 21, 2014
A controversy is brewing in Japan after a newspaper was tipped off about a practice stores use to combat shoplifting. A network of stores uses...
Debunking Start-Up's FST21 Case Study on Oct 07, 2013
This company won ISC West Best in Show 2 years ago, recently received $5 million in funding and is being talked about as the next big thing in...
The Laziest RFP Ever on Aug 13, 2013
Bad RFPs - out of date, vague or just plain confusing - are common. But this RFP is on a whole other level. It is as if no one even looked at...
3VR Significant Layoffs on Jun 28, 2013
3VR has laid off 15 employees, five of which are from its sales team, IPVM has learned. This leaves the company with a skeleton crew of three sales...
Future of Facial Recognition on May 04, 2013
The Boston Bombings reaffirmed how far facial recognition needs to develop to be an effective surveillance tool. Despite the PR spin jobs, facial...
FAILED: Facial Recognition & Boston Bombing on Apr 20, 2013
Facial recognition vendors have been tripping over themselves to take credit, insert or claim the wonders of their offerings to identify the Boston...
Successful Facial Surveillance Case on Jan 07, 2013
Real time facial surveillance is hard to do - accuracy issues, false alerts, cost and deployment complexity all conspire against it. This is why,...

Most Recent Industry Reports

Nest Cam Outdoor Tested on Sep 23, 2016
After years of claiming an outdoor model was "coming", addressing their biggest user demand, Nest has finally released their Outdoor Camera, an...
ACTi Refuses Race To The Bottom, Shifts To Solutions on Sep 23, 2016
The original low cost IP camera disruptor was ACTi. Back in the 2008 - 2010 time frame, Taiwanese manufacturer ACTi challenged the Western and...
You Get Robbed, Canary Will Pay You Up To $1,000 on Sep 22, 2016
Canary is trying to break the status quo in DIY security, first by raising over $40 million, and now a revamp of their monthly services package...
Milestone Ends Development of "Enterprise" VMS on Sep 22, 2016
Milestone 'Enterprise' was one of the first enterprise video management software offerings, selected by many early adopters of IP video. However,...
History of Video Surveillance on Sep 22, 2016
This is a concise history of video surveillance covering the past decade.  The goal is to help professionals newer to the industry understand...
Access Control Course Fall 2016 on Sep 22, 2016
IPVM offers the most comprehensive access control course in the industry. Unlike manufacturer training that focuses only on a small part of the...
Totally Wireless IP Camera (IPVideo Corp NomadHD) on Sep 21, 2016
Wireless battery powered cameras have been a surveillance pipe dream for years, limited by camera power consumption, battery technology, and...
Axis Launches IP Speakers on Sep 21, 2016
First, Axis introduced an IP horn, then it was video intercoms, and now it is Networked Speakers? While IP-based Public Address systems are not...
Tagged RFID Object Search Recorded Video on Sep 20, 2016
Video analytics has gotten fairly good at tagging people in video, but it does not solve the problem of finding items like specific merchandise or...
FLIR and Geovision Join the Hikvision Price Cut Race on Sep 20, 2016
Hikvision's price cuts are clearly a trend setter. After numerous and increasingly large cuts, the destructive cycle is accelerating. Last month,...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact