Motion Detection Performance Tested

Author: Benros Emata, Published on Sep 05, 2011

Motion detection is an important element of many, if not, most surveillance systems. It plays a central role in both storage search time reduction. Storage is routinely reduced by 30% - 80% by using motion based rather than continuous recording. Likewise, an investigator can often much faster find a relevant event by simply scanning through areas of motion rather than watching through all video.

At the same time there are a number of challenges associated with using motion detection:

  • Scene Conditions: The accuracy of motion detection and the amount of times motion is detected can vary depending on what's in the scene - people, cars, trees, leaves, etc. - and the time of day - night time with lots of noise, sunrise and sunset with direct sunlight into a camera, etc.
  • Performance of Detector: Motion detetion is built into many surveillance products - from DVRs to VMS systems and now IP cameras. As such, how well each one works can vary significantly.

Our Test

In this report, we share our results from a series of tests we performed to better understand motion detection performance.

We did a series of tests in different locations:

  • Indoor well light scene to simulate the simplest scene possible
  • Indoor dark scene (<1 lux) to examine what problems low light caused
  • Outdoor parking lot to see how a complex scene with trees, cars and people would perform
  • Roadway to see how a moderately complex scene with periodic cars would perform

Three IP cameras were used with their motion detection enabled to see differences in performance:

With these tests, we answered the following questions:

  • How can one estimate motion percentage accurately?
  • Does motion estimation vary significantly by scene?
  • How accurate was motion detection in each scene?
  • Did certain cameras exhibit greater false motion detection than others? What scenes or conditions drove those problems?

Key Findings and Recommendations

Here are the key findings:

  • In simple scenes (e.g. good lighting and narrow FoV), estimating percentage of motion is relatively straightforward and has a low margin for error.
  • In complex scenes (e.g. outdoor, wide FoV, difficult lighting, and vegetation) estimating perentage of motion is difficult and can vary greatly.
  • Variance in performance across cameras increases significantly as the complexity of the scene increases.
  • All three cameras performed ideally (no false positives/negatives) in the very simple daytime indoor test
  • In the parking lot test all three cameras tended to record on motion in near continous fashion, due to vegetation and lighting effects
  • The Arecont Vision camera had significant false positives in low-light/nighttime scenes likely due to noise/gain as well as when sun is setting into the camera's FoV. This resulted in near continuous recording.

In light of these findings the following is recommended:

Get Video Surveillance News In Your Inbox
Get Video Surveillance News In Your Inbox

  • Unless the scene is very simple, motion detection settings (e.g. masking, sensitivity, and object size) will likely need to be optimized in order to achieve worthwhile benefits
  • For low-light scenes, consider reducing maximum gain. Also, experiment with different camera makes/models as performance can vary considerably in low-light/nighttime scenarios
  • Be careful about estimating motion in complex scenes as one's estimates can be way off

Daytime Indoor (Artificial Motion)

In this scenario, motion detection is configured via the VMS interface on all cameras. The cameras are left to motion record for a period of ten minutes. A subject enters the scene to introduce motion at three evenly spaced intervals during the ten minute span. A snapshot from the motion recorded video and playback timeline is featured below. Note that on the timeline 'blue' represents motion recorded video and 'gray' indicates no video recording.

Observing the timeline reveals that all cameras reliably detected motion during each of the three subject entries into the scene. Also, just as importantly, no false positives were triggered during times when the subject was out of the scene. The findings are not surprising given the simplicity of the environment (narrow FoV, strong and consistent lighting, no vegetation, and large subject/object).

Nighttime Indoor (Artificial Motion)

In this scenario, motion detection is configured via the VMS interface on all cameras. The cameras are left to motion record for a period of ten minutes. A subject enters the scene to introduce motion at three evenly spaced intervals during the ten minute span. A snapshot from the motion recorded video and playback timeline is featured below. Note that on the timeline 'blue' represents motion recorded video and 'gray' indicates no video recording.

In this low-light environment, motion detection/record behavior now varies distinctly across the three cameras. The Arecont due to noise and lighting effects continually 'believes' motion is occuring and as such effectively records in continuous fashion (high false positive rate). In direct contrast the Panasonic never 'believes' there is motion present throughout the ten minute scenario and as a result has produced no recording at all (high false negative rate). The Axis performs the same as it had in the daytime indoor situation, sensing motion/non-motion appropriately.

Daytime Outdoor (Natural Motion)

In this scenario, motion detection is configured via the VMS interface on all cameras. The cameras are left to motion record for a period of 30 minutes. All motion is organic and representative of a real world surveillance scenario. A snapshot from the motion recorded video and playback timeline is featured below. Note that on the timeline 'blue' represents motion recorded video and 'gray' indicates no video recording.

The frequency of motion detection/recording as seen on the timeline is inordinately high for all three cameras (~80 - 90% motion). The more complex environment (e.g., trees, shadows and other lighting effects) causes quite a number of false positives across the board. Note that the Panasonic nearly continously recorded throughout the 30 minute test, and that the Axis was just slightly less hyper sensitive. The Arecont was the least sensitive among the three but still considerably over sensitive when considering just conventionally relevant or important motion (e.g. human and vehicle subjects).

24 Hour Roadway (Natural Motion)

The following is a sequence of four timeline snapshots of two cameras (AV1315DN and P1344) configured to motion record throughout a 24 hour period. The cameras view the same roadway scene with the same FoV/lens angle. Their comparison provides some insights into differences in motion detection/recording sensitivities across different camera makes/models. Note that the VMS is used to initialize the motion detection settings from the camera and are left at the VMS prescribed defaults.

Late Afternoon (3:30pm - 5:30pm)

During the ~2 hours of daylight depicted on the timeline the Arecont camera exhibits considerably greater sensitivity than the Axis camera despite near identical FoVs and default (VMS prescribed) motion settings. As a result, the Arecont produced considerable false positives, whereas the Axis is characterized by quite a number of false negatives.

Evening (6:00pm - 8:00pm)

The playback is queued up on an Axis false negative, as evidenced by the presence of a vehicle entering the FoV captured by the overly sensitive Arecont camera. Also note how the Arecont begins to nearly continuously record after sunset around 7:15pm (red arrow), while the Axis tends to maintain the same frequency of motion detection/recording.

The high false positive rate (near continuous record) exhibited by the Arecont after sunset is somewhat predictable given that the Arecont produced similar results in the Nighttime Indoor test.

Nighttime (8:00pm - 10:00pm)

Here we see the trend of the Arecont's hyper sensitivity and near continuous recording continue during the nighttime/low-light hours. The playback is queued up on an incident where both the Arecont and Axis detected motion.

Early Morning (5:00am - 7:00am)

In this timeline snapshot, the Arecont begins to revert back to a less sensitive detection behavior at sunrise (red line). However, it is still clearly over sensitive and still produces considerable false positives and a fairly heavy duty cycle of recording to non-recording (~1:1 or 50%). In contrast the Axis continues to motion record at roughly the same frequency as in previous time periods.

Other Natural Motion Scenarios

The following timeline snapshot depicts the motion detection/recording behavior of two scenes: (1) small parking lot, and (2) indoor office. Motion was organic/natural to get a sense of the expected recording percentages of some typical surveillance scenes.

Small Parking Lot & Indoor Living Room/Office Space (3:30pm - 5:30pm)

The parking lot motion detection/recording frequency as depicted on the timeline was generally reliable and performed as expected. Most incidents were of legitimate human and vehicle traffic. Note that the FoV is of only moderate width and is well constrained to the overall area of interest.

In the indoor office scene, the majority of the incidents were due to legitimate human activity/motion.

Methodology

Here are the three (3) cameras used in the 'Motion Based Recording' study:

  • Arecont AV1315DN (online $460) - 1.3MP D/N; 1/2.7" CMOS; MPL4-10; 0.1/0 (Color/BW)
  • Axis P1344 (online $759) - 720p D/N; 1/4" CMOS; F1.2 Computar ; 0.05 Lux (BW)
  • Panasonic WV-SP306 (online $550) - 1.3MP D/N; 1/3" MOS; WV-LZA62/2 lens; 0.3/0.05 lux (Color/BW)

Here are the firmware versions for each of the cameras:

  • Arecont AV1315DN - fw 65197
  • Axis P1344 - fw 5.22.2
  • Panasonic WV-SP306 - fw 1.30
Comments : PRO Members only. Login. or Join.

Related Reports on VMS

Most Wanted Improvements In Manufacturer Technical Support (Statistics) on Jun 21, 2018
5 key areas of improvement and 1 clear wanted support feature were voiced by 140+ integrator responses to: What improvement in manufacturer...
Axis Guardian - Cloud VMS And Alarm Monitoring - Released on Jun 19, 2018
Axis has struggled to deliver a cloud-based managed service video platform. Video service providers have utilized AVHS for over a decade, and have...
ReconaSense - The AI / Access Control / Analytics / IoT / Video Company Profile on Jun 12, 2018
One company's ISC West booth stood out for displaying a light-up tower of buzzwords. The company, ReconaSense, pledged to be 'making sense of it...
H.265 / HEVC Codec Tutorial on Jun 07, 2018
H.265 support has improved significantly in 2018, with H.265 camera/VMS compatibility increased compared to only a year ago, and more manufacturers...
Bosch IVA Video Analytics And Motion+ VMD Tested on Jun 06, 2018
Bosch's video analytics now ship on nearly every model, from indoor domes to high-end 5MP starlight cameras.  In this test, we evaluate Bosch's...
Hikvision PanoVu 20MP Flexible Camera Tested on Jun 01, 2018
Hikvision has released their first repositionable multi imager cameras with integrated IR included, atypical in competitors. We bought and tested...
Oncam 12MP Fisheye Camera Tested on May 29, 2018
Oncam has made their name since the early 2000s as a fisheye specialist, focusing only on panoramic cameras. To see how this specialist stacks up...
VMS Server Sizing on May 25, 2018
Specifying the right sized PC/server for VMS software is one of the most important yet difficult decisions in IP video surveillance. In the past...
Hanwha Wisenet X Analytics and VMD Test on May 24, 2018
Continuing our updated testing of camera analytics, we tested Hanwha's Wisenet X analytics for over two weeks in multiple scenes, indoors and out,...
Software Only VMS vs NVR Appliances on May 23, 2018
Should you buy your own PC/server and load VMS software on it or get a turnkey appliance (both hardware and software, e.g., NVR, Hybrid DVR) from a...

Most Recent Industry Reports

Hikvision Covers Up Racial Profiling And AI Error on Jun 25, 2018
Faced with global scrutiny, led by the US government-funded Voice of America (VOA), Hikvision has covered up evidence showing their racial...
Axis Guard Suite Video Analytics Tested on Jun 25, 2018
In 2015, we declared Axis' Guard Suite analytics "weak", with missed detections and false alerts common. But after nearly 3 years and a 2.0 version...
Huawei Software Defined Cameras on Jun 25, 2018
Huawei is aiming to break the reputation of Chinese companies not being good at software. The company is now leading their video surveillance...
July 2018 IP Networking Course on Jun 22, 2018
  This is the only networking course designed specifically for video surveillance professionals. Register now. Lots of network training exists...
Installation Hardware for Video Surveillance - Indoor Fasteners on Jun 22, 2018
As part of our Installation for Video Surveillance series, in this note, we cover drywall anchors. A key part of installing security hardware is...
Hikvision ColorVu Integrated Visible Light Cameras Examined on Jun 22, 2018
When it comes to low light, infrared light has become the defacto standard in surveillance. But IR is limited to monochrome images, making colors...
'Secure Channel' OSDP Access Control Examined on Jun 21, 2018
Despite claiming to be better than Wiegand, OSDP's initial releases did not address the lack of encryption between reader and controller, leaving...
Most Wanted Improvements In Manufacturer Technical Support (Statistics) on Jun 21, 2018
5 key areas of improvement and 1 clear wanted support feature were voiced by 140+ integrator responses to: What improvement in manufacturer...
GDPR / ICO Complaint Filed Against IFSEC Show Facial Recognition on Jun 20, 2018
IPVM has filed a complaint against IFSEC’s parent company UBM based on our concern that the conference violates core GDPR principles on...
IFSEC 2018 Final Show Report on Jun 20, 2018
IPVM attended the IFSEC show for the first time this year. The Chinese took over the show, centered on Hikvision, flanked by Dahua, Huawei and a...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact