SD vs. HD PTZ Shootout

Author: Benros Emata, Published on Aug 20, 2011

PTZs, like fixed cameras, are moving to megapixel. With PTZs, though, real questions remain about the value of going to megapixel.

Some people say that megapixel eliminates the need for PTZ, regardless of the PTZ's resolution. Our Fixed MP vs SD PTZ camera test results show that such claims are simply false.

Maximum Coverage Area Concerns

However, another major concern exists with Megapixel PTZ cameras: While SD PTZs commonly have optical zoom ranges of 30X - 40X, Megapixel PTZs optical zoom ranges are generally only 10X - 20X. This is not an accident. Today, and for the foreseeable future, technical and cost limitations exist in making MP lenses with the large zoom ranges common for SD PTZs.

While Megapixel PTZs offer more resolution than SD PTZs, their optical zoom range is much smaller. This raises a big concern: Which PTZ - SD or Megapixel - can see the farthest? If SD PTZs have a farther maximum coverage area, going to megapixel PTZs would bring a major drawback as maximum coverage area is a key concern.

Our Test

In this report, we tested an SD PTZ against 2 MP PTZs to better understand the tradeoffs involved.

The cameras included:

We did a series of test in a large parking lot to simulate real world conditions for PTZ deployment. The tests were done both during the day and at night to see how performance varied across lighting conditions.

We tested three scenarios that were likely to differentiate performance:

Get Video Surveillance News In Your Inbox
Get Video Surveillance News In Your Inbox

  • Wide Field of View - When the PTZs are zoomed out wide, with the same FoV, what difference between MP and SD can be seen?
  • Moderate Zoom and Tracking Subject - When the PTZs are zoomed in moderately to track a suspect in the middle of the scene, what differences are observable?
  • Maximum Zoom In - When all the PTZs are zoomed in as far as they can go, which PTZ can see the furthest?

Below is an overview image of the location we tested:

Key Findings and Recommendations

Here are the key findings:

  • The SD and HD PTZs delivered about the same level of image details and overall clarity when maximally zoomed into a subject/object ~230ft away
  • For a given level of image details, an SD PTZ tends to require more manual control or operator involvement, and less background/contextual scene coverage relative to an HD PTZ
  • Optical zoom ratios are not a suitable metric for determining how far a PTZ can 'see'
  • The potential for details is based on a combination of two key factors: (1) minimum lens angle and (2) camera resolution. Thus resolution (SD or HD) is insufficient to determine the maximum level of detail that can be delivered for a particular PTZ camera
  • Pricing was fairly close with the HD/MP models being equal or only modestly more expensive than the SD

In light of these findings we recommend that users strongly consider HD PTZs over SD PTZs. They produce the same (or perhaps slightly better) maximum distance range and provide superior contextual awareness as the HD/MP PTZ can deliver the same image details over a wider field of view. Pricing is similar so product cost should not be a problem. Bandwidth and storage are a consideration and more so than with a fixed camera as a moving PTZ will consume 2 to 3x more bandwidth than a fixed camera, all else being equal.

Understanding Optical Zoom Ratios

Do not be mislead that a higher optical zoom ratio, e.g. 40x, is massively better than a lesser one, e.g. 20x. Judging expected performance of a PTZ based on this metric should be avoided as it can be entirely misleading. A 40x PTZ really only has twice the range of a 20x PTZ, not the extra 20x the metric might imply.

Focus first on the minimum lens angle. This can generally be found listed in the specification sheet (e.g., - the Canon MP PTZ lists 2.8 degrees as the minimum lens angle on its specification page while the Canon SD PTZ lists 1.5 degrees as the minimum lens angle on its specification page.

If you cannot find it listed, you can calcuate with two other common metrics: (1) the imager size (e.g. 1/4", 1/3" etc.) and (2) the maximum focal length (e.g. 136mm, 94mm, etc.). Plug these two values into certain lens calculators and they can give you the corresponding minimum lens angle.

For example the SD PTZ (Canon VB-C60) we tested has a 1/4" imager and a 136mm maximum focal length. Based on these two values the minimum lens angle is 1.52 degrees. On the other hand one of the HD PTZs (Canon VB-M40) we tested has a 1/3" imager and a 94mm max focal length. This yields a miminum lens angle of 2.93 degrees. The SD's minimum lens angle is roughly half that of the HD's.

Thus the SD PTZ is able to achieve 1/2 the horizontal FoV when maximally zoomed. If the horizontal resolutions were the same then the 1.52 degree PTZ would provide roughly twice the ppf as the 2.93 degree PTZ. However, this is not the case as the SD provides 640px horizontally and the HD 1280px. Thus the SD has the advantage of a HFoV that is ~2x narrower but with only half the pixels as the HD (640 versus 1280). The HD camera has to deal with a ~2x wider HFoV, but with twice the number of pixels. As such they are roughly equivalent in ppf when fully zoomed despite one being 40x and the other being only 20x.

Download Video Clips

Near Range (Distance ~30ft/HFoV ~30ft)

The PTZs are normalized to ~55 degree lens angle at this relatively short distance of ~30ft. As a result the HD PTZs have twice the pixels per foot in the same FoV width as the SD PTZ.

Daytime

For the same overall coverage area the HD PTZs provide twice the ppf as the SD PTZ, and this results in a more detailed image. At this FoV the HD PTZs provide a high likelihood of identification. The WV-SC385 exhibits a slightly sharper image than the VB-M40.

Nighttime (Max Exposure Normalized to 1/30s)

The relatively lower light dimishes image quality slightly across the board, but overall HD still provides greater ppf and subject/object details than the SD at this normalized FoV.

Mid Range (Distance ~100ft/HFoV ~10ft)

In this scenario PTZs are optically zoomed to ~10ft HFoV at the subject's location ~100ft away. Given that HFoVs are normalized, the HD PTZs provide ~2x more ppf than the SD PTZ.

Daytime

Even though the subject is located ~3x further away versus the previous 'near' scenario, optically zooming into the subject to a tighter HFoV increases the ppf by ~3x across the board. As a result, details are strong in all three PTZ images. However, with twice the ppf resolution, the HD PTZs manage to deliver slightly more details than the SD PTZ.

Nighttime (Max Exposure Normalized to 1/30s)

Again, despite a ~3x increase in distance to subject versus the 'near' scenario, image quality is considerably better across the board due to optically zooming in to a tight ~10ft HFoV versus the ~30ft HFoV of the 'near' scenario. The HD PTZs again deliver twice the ppf at this normalized HFoV over the SD and as such provide slightly better detail and clarity. Identification is fairly likely for SD and HD alike at this fairly narrow FoV. Note the VB-M40 is somewhat under-exposed compared to the SD and WV-SC385 PTZs.

Far Range (Distance ~230ft/HFoV Varies Per Camera)

In this scenario, each PTZ is zoomed in maximally to a subject ~230ft away. The SD PTZ is able to obtain the narrowest HFoV of ~6ft (136mm focal length/1.52 degree lens angle). This is roughly half the HFoV that the HD PTZs are able to obtain. As a result ppf is very close (~100ppf) across all three PTZs.

Daytime

far ptz comparison

Optical zoom allows all PTZs to obtain a fairly narrow HFoV even at this distance of ~230ft. As a result ppf is high across all cameras (~100ppf) and details are strong on the subject/object. Note the SD PTZ needed a HFoV roughly one-half that of the HD PTZs in order to achieve similar results. It accomplished this because of a minimum lens angle (1.52) that is roughly one-half that of the HD PTZs (2.93/VB-M40 and 3.25/WV-SC385).

Nighttime (Max Exposure Normalized to 1/30s)

Light levels are at their lowest in this corner of the parking area, and has a clear negative impact on image quality across the board. Furthermore, results are slightly unexpected as the SD's image, despite similar ppf as the HDs, is slightly less detailed. Note in the analogous daytime scenario its image quality was on par with the HD images. Secondly, the SD is somewhat under-exposed relative to the HD PTZs (especially the Panasonic WV-SC385).

Methodology

Here are the PTZs used in 'HD vs. SD PTZ Shootout':

  • Canon VB-C60 (online $1225) - SD (640x480); 1/4" CCD; 3.4-136mm; 0.7/0.2 lux @1/30s (color/bw)
  • Canon VB-M40 (online $1450) - 1.3MP (1280x960); 1/3" CMOS; 4.7-94mm; 0.03/0.001 lux @1/8s (color/bw)
  • Panasonic WV-SC385 (online $1250) - 1.3MP (1280x960); 1/3" MOS; 4.7-84.6mm; 0.5/0.06 lux @1/30s (color/bw)

Here are the firmware versions used per camera:

  • Canon VB-C60 - Firmware Version 1.1.0.3687
  • Canon VB-M40 - Firmware Version 1.0.0
  • Panasonic WV-SC385 - Firmware Version 1.05

Here are the six (6) key scenarios:

  • Daytime Near Range (Distance ~30ft/HFoV ~30ft)
  • Nighttime Near Range (Distance ~30ft/HFoV ~30ft)
  • Daytime Mid Range (Distance ~100ft/HFoV ~10ft)
  • Nighttime Mid Range (Distance ~100ft/HFoV ~10ft)
  • Daytime Far Range (Distance ~230ft/HFoV Varies Per Camera)
  • Nightime Far Range (Distance ~230ft/HFoV Varies Per Camera)

All PTZs were normalized to a 1/30s max exposure length for any low-light/nighttime test scenarios. For both 'Near' and 'Mid' range scenarios all PTZs were zoomed into the same HFoV (same lens angle). For the 'Far' range scenario each PTZ was maximally zoomed. Thus the 'Far' range images have a unique HFoV for each corresponding PTZ.

1 report cite this report:

Directory of Camera Shootout Series on Dec 27, 2011
The following directory lists all of our camera shootouts. These shootouts pit 4 - 8 different surveillance cameras in simultaneous tests on real...
Comments : PRO Members only. Login. or Join.

Related Reports

Axis Perimeter Defender Video Analytics Tested on Jul 12, 2018
Axis 'high security' video analytics offering is Perimeter Defender, OEMed / developed with Digital Barriers. But how good is Perimeter Defender?...
Axis Guard Suite Video Analytics Tested on Jun 25, 2018
In 2015, we declared Axis' Guard Suite analytics "weak", with missed detections and false alerts common. But after nearly 3 years and a 2.0 version...
Introducing Effective PPF (ePPF) - Improving Video Surveillance Designs on Jun 11, 2018
Pixel density (PPF / PPM) is the best metric the industry has to define and project video quality. It allows simple communication of estimated...
Powerline Networking For Video Surveillance Advocated By Comtrend on Jun 08, 2018
Powerline networking, using existing electrical wiring, has been around for many years. Indeed, over the years, some video surveillance providers...
Bosch IVA Video Analytics And Motion+ VMD Tested on Jun 06, 2018
Bosch's video analytics now ship on nearly every model, from indoor domes to high-end 5MP starlight cameras.  In this test, we evaluate Bosch's...
Dahua Intrusion Analytics And VMD Tested (Poorly) on May 21, 2018
Dahua ships basic analytics on practically all their cameras, ranging from low cost to high end. To see how these analytics work in real world...
Axis 12MP Stereographic Camera Tested (M3058-LVE) on May 10, 2018
Axis has released the M3058-PLVE, a 12MP sensor, stereographic panoramic camera and Axis' first with integrated IR claiming images "sharp to the...
Last Chance - May 2018 Camera Course on May 03, 2018
This is the last chance to register as the course starts next week. This is the only independent surveillance camera course, based on in-depth...
Hikvision DarkfighterX Vs Darkfighter PTZ Tested on Apr 26, 2018
Hikvision has focused on improving low-light performance for PTZs, an area that has traditionally been a problem, even more so than fixed cameras,...
Axis Launches Mini Concealed IR PTZ on Apr 11, 2018
Axis has been a laggard in releasing IR PTZs. While the company released a laser focus PTZ (the Q6155-E tested) until now Axis has had no PTZs with...

Most Recent Industry Reports

Directory of Video Surveillance Startups on Jul 18, 2018
This directory provides a list of video surveillance startups to help you see and research what companies are new or not yet broadly known entity...
Ladder Lockdown and Ladder Levelizer Tested on Jul 18, 2018
Ladders are a daily necessity for surveillance and security installers, but working on an unstable surface can be extremely dangerous. In addition...
FST Fails on Jul 17, 2018
FST was one of the hottest startups of the decade, selected as the best new product at ISC West 2011 and backed with tens of millions in...
Axis ~$100 Camera Tested on Jul 17, 2018
Axis has released their lowest cost camera ever, the Companion Eye Mini L, setting their sights on a market dominated by Hikvision and Dahua. Can...
Amazon Ring Alarm System Tested on Jul 16, 2018
Amazon Ring is going to hurt traditional dealers, and especially ADT, new IPVM test results of Ring's Alarm system underscore. IPVM found that...
Hikvision Wins Chinese Government Forced Facial Recognition Project Across 967 Mosques on Jul 16, 2018
Hikvision has won a Chinese government tender which requires that facial recognition cameras be set up at the entrance of every single mosque...
Installing Dome Cameras Indoors Guide on Jul 16, 2018
IPVM is producing the definitive series on installing surveillance cameras. This entry covers one of the most common scenarios - installing dome...
Security Sales Course Summer 2018 on Jul 13, 2018
Based on member's interest, IPVM is offering a security sales course this summer. Register Now - IPVM Security Sales Course Summer 2018 This...
US Tariffs Hit China Video Surveillance on Jul 13, 2018
Chinese video surveillance products avoided tariffs for the first two rounds. Now, in the third round, many video surveillance products will be...
Last Chance - July 2018 IP Networking Course on Jul 12, 2018
Registration ends today, Thursday. Register now. This is the only networking course designed specifically for video surveillance...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact