Gait Recognition Examined

By Zach Segal, Published on Sep 14, 2020

Facial recognition faces increasing ethical and political criticisms while masks undermine its effectiveness. One alternative is gait recognition but how realistic is using gait?

IPVM Image

IPVM investigates gait recognition's pros and cons compared to face recognition including interviews with a leading gait expert Professor Mark Nixon and a review of various research papers on the topic, explaining:

  • Gait Recognition Fundamentals
  • Accuracy vs Facial Recognition
  • Factors that Affect Gait Accuracy
  • Benefits of Gait
  • Gait Computationally Intensive
  • Enrollment Hard, Data Lacking
  • Appearance Vs. Model
  • 3D Images and Angle Simulation
  • China Watrix, Only Surveillance Gait Seller
  • Dahua Claims Record Accuracy
  • Gait Recognition Use in Court
  • Gait for Authentication/Access Control
  • Other uses for Gait

Executive *******

**** *********** **** * person's ****** **** *** movements ** ******** **** but ** ** ** in **** ******* *** today ** ** **** to ********* *** ****** it ** ** **** be.

******* *** ** ** not ** ******** ** face *********** *** ***** supplement **** *********** *** other ********** ******* ** has ********* **********. **** also *** ** *** be **** **** * wider *** **** **** recognition, ***** ** ****** with *****, *** ** hard ** *****. ***,** ***** **** *** company ******* **** *********** (China's******) ****** *** ******* ** gait *********** ********** *** challenges ********* ***** ********, significantly ****** ********* *****, camera ******* ******, *** difficult **** **********.

What ** **** ***********

**** *********** **** *******'* walk*** ******* ** ******** or ************ **** **** one ******** ****** ***** (left *** ***** *****, ~1 ****** ** *******) with ********* ******** ***** PPF ************ **** ***** biometrics. ****, ******, ** a ******** ***** **** technology ****** ** **** than *** ******* ***** (i.e., ***** '****'). *** ***** ** **** body, ***********, *******, *** arms *** ******** **** alongside **** ********* *** walking ***** *******.******* *** **** ************** ** **** **** fewer *** **** **** recognition ******* **** *********** relies ** ****** ********.

IPVM Image

High ***** **** ********

****** **** ***********, **** recognition ******** * ******** of ******. ************* *****, *** ********** **** recognition, **** **** **** recognition* **** *****/****** ** roughly * ****** **** higher *** ******* ** higher ******** *** **** higher **********. **** ***** gate *********** ** *** more *************** ********* **** other ********** ******* ** the **** ****** ****** of ****** ****** ** accomplish **.*** ***** ******* ****** **** *** few *** ******** ** accuracy ** **% **** 50 ******, **% **** 60, *** **% **** 70 *** ********* *** test **** *** *** not ********* ** *** accuracy *** *** ********** of *******. **** **** mentioned **** **** ****** slightly **** **** ****:

******** *** ****** ** the **** ***** ** about * *, **30 − ** ******, **** ***** ********* **** ***** ** ** ************ for good individual recognition. Increasing the number of consecutive frames for classification improved the results. The expanded time of analysis was required because body ***** ******* *** ******* *** *** ********* *** **** **** and, correspondingly, using long sequences makes recognition more stable to small inter-step changes in walking style.

***** **** **** "**** still ******* ** ** unique" **** ************ ********* reaching **,*** ****** ******* duplicates.

Gait **** ******** **** **** ***********

**** *********** ** ***** ******** ** **** recognition. **** *********** ******** claims***********%-**% ****** ********* ***** vs**.**+% *** *** *** face ********************* ** **** ******* but ***** ******* *** be ********** ******* **** are ***** ** ********** scenarios.

** ********,* ********** ** ***** team******** * **** ********* test ********* ** ******** of **** **-**%. * key ********** ** **** the ******* **** ****** at **.***/** ******* ** chest *****, ** **** are ** **** **** tests, *** ******* ***** shows *** ***** ******** angle:

IPVM Image

**** ******* * **,*** person **** *** *** used *** ****** ** 25 ***, ~** ******, to ****** *-* **** and ******** ****** ****** to ******** ****-**** ***** the ***** ** ******* does *** ****** ***** up. **** ****** * common **********-***** ****** (**** only **** ** **********-*****) and ***** * *** based ********** *** ********** of **-**% *** * other ********** ******* * and **%. **** ** the ***** ********** ********* was ******* *** ******** accuracy **%, *** **** algorithms ***** **** **** than **% ******** ** the **** ********* ****.

Factors ********* ********: ****** *****, ********, *****, ******* ******

********, *****, ******* *******, and **** *********** ****** angle ****** **** *********** accuracy. ****** ***** ******* recognition ******* ****** **** different **** ********* *****.*** **** ** *************** ****** ***** ** the **** ********* *** important ****** ********* **** recognition:

****** *****, *******, *** considered *** **** *********** factor— ***** *** ****** the **** ******** ** a ****** ******

IPVM Image

****** **** ************* ********* *****, **** rocks ** ***** *****, while *******, *** ***** carrying *******, ** **** impacts *** ******** ** gait ***********.**** *********** *** ** affected** ******** *** ******** carrying *******. ******* *** objects ****** * ********** and *** **** ****** a ******’* ****.

IPVM Image

~20 *** ********

**** *********** *** **** done **** *** ***** high ****** ** in **** *****. ***************** ******* **** ****** ***** **** *** Pixel ****** ******, ** ** *** for ******* *** ** 5 **** **** *** 16.7 *** *** ******* who ** * **** tall:

*** ****** ** ****** is * ********** ******** resolution *** **** ***********. With ****** **********, *** will ***** ******* ****** performance.

**** ***** **** * ~60-foot *** *** * 1080p ******. ** **** stated **** ** **-** pixels ** ******, **** recognition ******* **** ***********. This **~*/*** ** **** **** says** ******** *** **** condition **** ***********.

Gait *********** **** ** ***** *****

**** ************* *** ******** ** wearing *** **** ** mask ***** ** **** not ****** ** ***'* face, ***** ** ** advantage ******** ** ****** recognition.

IPVM Image

***** ******** ** ***** or ****** **** *********** such ** ***** ** a ****, ******** * backpack, ***. **** **** some ****** *** *** much ******* ** *** algorithm/ ************** ** *** gait ***********.********* ***** ******** ******** at ******** **** *** only ********* ********* ******* of *** **** ***** of ******** **** *********** uses:

**** ** * *********** of **** ***** *** movement. ** *** *** rocks ** **** *****, we ***** **** ** use *** **** ************ only, ** ******* **** movement ***** ******.

Gait *********** *********, **** ******** ******

**** *********** ** **** more *************** ********* **** alternatives ******* ** ******** multiple ******.**** *********** ** **** computationally **** **** *********** because ** ****** ** sequences ** ****** ******* of * ****** **** image. ********* ***** **** APNews **** *********** ******** more ******** ********* **** other **********:

**’* **** ******* **** other **********, ***************, ... It ***** ****** ********* to ** **** ******* you **** * ******** of ****** ****** **** a ****** *****.

**** ***** **** **** recognition **** **** ********* than ************. *** ********** grows ************* **** ******** images *** ******** *** gait *********** ******** ~* full ****** ** ******. The ******** ****** ** have **** **** *** 25.

Gait ********** ****, **** *******

IPVM Image

*******, ********** ** *** easy *** ******** *** relatively *****.** *************** * ******* ******* and ******* *** ******** when ******** ******* *** used ** ******* ********* angles (******* ** *** right). **** ** **** time, *****, *** ********-********* than ********* * ****** high-quality **** *****.

**** *********** **** ** much **** ********** ******* governments **** ****** ** their ***********' **** ******, driver’s ********, *********, ****** data. *** ** *** United ******,** ** ***** ** scrape*** ** *** ******** of ****** ** ****** media *** *** ********.*** ******* **** *******,**-*****, ******** **,*** ******'* silhouette's **** ** ****** and ******* ** ** for ******** ******** ****. It ** **** ********** data ******* ** *****, which ***** ******* ****** cannot *** **.**** **** ** **** could **** ********* **** being **** ** ******* algorithms, ***** *** ********** of **********, *** **** algorithms **** ****** *** more ******. **-*****'* *******'* found *** ******** ** the **** ******** **** of ********* **** ****** go **** ~**% **** trained ** *** ****** to ~**% **** **,***. If *** ***** *********, we ***** ****** ~**% accuracy **** * ***,*** person *******

Appearance **. *****-*****

***** *** *** **** classes ** **********, **********, *** *****-*****. Appearance-based ****** **** ******* into * ********** *** use **** *** ********. Appearance-based *** *** **** common ******* **** *** simple, ****, *** **** computationally *********.**** ******* **********-*********** ******* ******** ****** into *** ***, **** Energy *****, ***** ****** are ********* **** *********** and ***** *********** *** averaged ******** ******** ******* shades ** **** ***** movement ******.

IPVM Image

*****-***** ********** *** ****** of *** ***** **** and ***** ** * person ** ****** * model **** ********** **** instead ** * **********. They *** **** *********** and *************** ********* ******* they ******* **** *****. They *** **** ********* to ***** *** ***** variables ******* *** ****** they ****** *** **** affected ** ******* *********. A ******** ** **** can ****** * ********** in ** **********-***** ********* but * *****-***** ********* should ** **** ********. Changing *** ****** ***** has * ***** ****** on ***********,*** ****** ****** ** the **** ********** ** the ****** ** *** footage **** *** ***** from.

IPVM Image

3D ******

***** **** **** **** the **** ********* *** complex ********** *** **. He **** ** ******** multiple ******* ** ****** a ** ***** ** the ******. **** *** be *********** ******* ** requires **** *********** ***-***, to ****** *** *** of ******** ** ******* by ******** *******, *** combining **** **** ******** cameras ** **** **** computationally ********* **** ***** a ****** ******.**********- ** *****-*************** *** ** **.

IPVM Image

Simulating ******

IPVM Image

*** **** *** ************* **** ******** ** simulate **** ***** ****** angles ***** **** ************ mitigates *** ****** ** different ****** ****** ***** not ********* ******** *******, which **** *** ** unrealistic:

***** ******* ******* * fully ********** *** *********** multiple ****** ************, ***** limits *** *********** ** real ***** ************ *********.

**** **** **** ** match *-* *********** **** different ****** **** * ~30 ********** ***** ***** in ********, ******** ** other ********** **** *** 60+ ********** ***** ***** when ******** ****** ***** from ********* ******.

One *** *******, ****** ** ******* **** ***********

******** * ******* ******** vision ******* ******* ********* **** ************************ ** *** ****** in *** ******'* ********** ***** *** ** part ** ******** ************ **************. ** **** *** found ****** **** ******* the **********. ****** ****** their ******** ** **% accurate *** ***** ** 50m/165ft *** *** *** specify *** ** *** requirements. ****** **** **** detection ** ********* ********* to *********** ******** *** does *** ******* ********* subjects.

IPVM Image

****** *** ***** ******** told** **** *** *********’* full **** ******** ***** it ********* ** ********:

******** **** **** ***** reduce *** *********** ***** but ** ******* *** of * ******’* ****

****** **** *** ************ ***** **** ** a ************ *** **** for ****-**** *** ************* by *** ******* ****** and ********** *** ** cases, ********** **** * TB ** ****** *******.** ******* ****** **** in **** ******** ** ************ ** sell ~$** ******* ** technology ** ********* ****** China.**** ***** ******** ******:

** *** ********* ******* with ****** ** ******** investigations, **** ** ******** suspects **** * ******* scene, ... *********, ***** has ***** ***,*** ****** criminals ** *** ***** and ********. [*** ********’*] database ******** ***** **** a ***** **** ******.

**** ********* ***** ***** Watrix ******* **** ** its ********** *** *** use ** *** ***.

********,****** ********* ********* ********************/**** ******** ***** ** ease ******* *******.

** ******** ** ***** limited *** ** *****, 20 *****/* ** ** data, ****** **** *** claim ******* ******* ** China ** ******* ***** 2018. ***** *** *** strong ***** *** ****** and **** ***********. ** would ****** ** *** more ***** *********** *** more ****** ******* ****** if ****** *** **** to ******* **% ******** in ****-***** *****.

Dahua ****** ** ***** ****** ** **** *********** ****; **** ****** ******

IPVM Image

** ****** ****,***** ********* **** ****** *** record ** ********-* **** *********** *******.*** **** *********** ** ** ****** of *** ******** ******* from ******** ******. ** is *********** ******* ** has ***** ***********, * full ******** ** ***** angles, *** ** **** at * *** ****** (no ****-****). ****-***** ******** could ** **** ********* than *****-* ********. *** small ****** **** **** makes ****** ***** ** ************* ****** ** ********* that ***** **** **** for **** *** ****** in *** *******.** *** ***** ********,

**** **** ********* ... contain *** ****** *** video ******* *** ************ between *******. **** ** of ****** * ***** approach, ** ** **** life ****** ***** **** together **** ***** ****** intersecting; ************, **** ********* allows *** *** ******** of * ***** *** checking ** *** ******* of **** *********** *** be ************* ******.

***** ********.*% ******** ** * plain *******, **% ** subjects **** ****, *** 87% ** ******** ** coats. ** **** *** found *** ********** ** Dahua ******* **** ***********.

******:****** *** ********* **** ****** *****'* record ** *** *****-*. They ***** **.*% ******** on * ***** *******, 95.8% ** ******** **** bags, *** **.*% ** subjects ** *****.

IPVM Image

Examples ** *** ** ****** ******* ** *****

**** *********** *** **** used ** ******** ** courts ** ***** *** Denmark

  • ***** ***** **** *** Japanese ****** ******** **** *********** ***** 2013 *** ******** ****** a ******* ** **** by **** *********** ¾ masked *******. **** *** it *** **** ** times ******* ********* *** May ****.
  • **** *********** *** **** as ********* ******** ** a ******* ** ******* in ****. ******* ***** during *** ***** *** compared **** ******** ******* of *** ******* ** evidence *** *** *** used *** *** *************.

IPVM Image

American ******* ** ******** ******* ***** *******

** ******* ***** ******* ** ******** Sciences(*** ******** *********** ** the ******** ******* ** Forensic ********)***** ******* **** ***** gait ************* ******** ** ****.

*********, ****** ****** ***** gait ******** **** *******, as **** ****** *** other **** ** ******** originating **** *********** ******* fully *********** ***** ** practice, ***** *****, *** demonstrable ************ ** ******** scenarios.

Gait *********** *** ************/****** *******

********* *** **** *********** can ** **** *** passive ****** *******/************ ******* a *******’***** *****,***** *******, *********. ****** **** ***********, fingerprinting, ** ****** ************ gait ******* *** ** done *********/************* ******* ************.**** ** * *** advantage******* ** ******* *** inconvenience ** ******** ***** causes ****** ** ***-*** of *********, **** ******, or **** *********** *** phones *** ***** ********. Users ***** **** **** a **** **** ***** automatically *** ****. ** addition, ****** ***’* **** to ***** ***** **** masks ******** ***** *****, looking **** ** ***** phones, ** ******* ******* that ******** * *** feature.

UnifyID *** **********-***** ************** ********

********* * ********** ******* that ** ******* ** changing ************** ******* ********** including **** ***********. **** have ******** ****** *****-***** gait ************************** ******* **** ** integrated **** ****** *******, in-app-purchases, ******* ******, *** other ****.******* **** **** **** GaitAuth ***** ** ******** and ******* **** **************, including *****-*** ****** ******* fingerprint ** **** *********** capabilities. ******* **** **** that *** ********* ** stored ** *** ****'* phone *** ****** ***** behavior. ** ***** ** thrown *** ** ***** placed ** * ********* pocket, ******* ********* *****, and ***** ******* **** affect **** ***********, *** UnifyID **** *** ********* can ***** **** ***** changes *** ***** ***. It ***** ** ****** to ********* *** **** these ********* *******, *** needs ** ***** *** with **** ******.

**** **** **** *** technology ** ********** **** ************, *** we **** *** ****** it:

*** ******** **** ******** is ** *** **** physical ************ ***********, **** a */**,*** ***** ******** rate.

Other ********** - ***** *****, ***** *******

*********** **** **** ******** using ***** *******, ***** ***** ** invisible, ******* ** *******. This ***** ******* ******** and **** **** *** technology ********* ********** ******* backlash.* **** ** **** looking**** ***** ***** *****, which ***** ** **** with ***** *** **** cameras *** **** ** any ******** ********.

Gait ******** *** ********** ********, ******* *******, ******** ****

**** *** **** ** used ** ***** ****** falling, *** ********** ********, and **** ***** ********** traffic.****** **** ***** *************** *********** ** **** to **** ****** *** need ****, **** ** elderly *********** *** **** fallen ****. ******* ***** be **** ** **** for ****** *** **** fallen *** **** ** not *** **. **** recognition ****** **************** ******* ***** **** *********** ****** **** ***** Times** ***** ** ****** from ******** ** ******* use *****:

** *** ******, * also **** ** ***** the ************ ** ***** health ** ****** **** the **** **** ****

** ***** **** ** used ** **** *** suspicious ********.* **** **** ******* Tech ********* * *********** ** ***** ***** that *** ******* ********.**** **** *************** ***** technology***** ** ** *** feet **** ******* **'* based ** ***** ***** and ** *********** *** the **** ******. **** said ** ****** ****** specific *********** *** *** tell ** ******* ** behaving ************ *** ****** information ***** ***** ****, is ** ****, ****, deliberate, ***. ***** **** principles ***** ** ******* to ********* ********** ********. You ***** *** **** areas **** **** ******* and *****/**** *********** **** and **** ** *********** or *****.** **** *** ** able ********* *********** ** ******, age, *** ******** *************** of *********** ***** ***** less ********, *** **** computationally *********** **** **** recognition.

*******

**** *********** *** **** in ********** ***** **** recognition *** ***** ********** don’t ** ** ***** help ********** ************ *******. It *** **** **** access *******/************** * ****** and **** ******* **** experience **** ** ********* to **** *********. *******, the **** ** ********* working ** *** ******* gait *********** ** * sign *** ********** *** major *****. ******* ***** stem **** **** ***********'* large ************* ******, ***** accuracy, *** ****** ** factors **** ** ***** or ****, *** ********** of ********** ****, ** lack ** ********, ** is * *** ****.

Comments (16)

****, ***** ****!

*******, ** *** **** any *************** ** ******* edge ** ******** ************ you ***** **** **** to *******, ****** *** us ****.

****, ****** **** ***. The ******** ** **** modality ** ****** ** accuracy. *'* **** ** see **** **** ******* to ********* ***** *********** in * ********** *** meaningful ***. **** * vendor ***** *% ********, what **** **** ****? As *** *** ********** one **** ***** ***** Positive *** ***** ******************* ******* ******** **** for ************** ****. *'* reluctant ** ****** ******* much ** **** * vendor **** ***** ***** own **********, ********** **** it's ********* ** ********. But *'** ******* ****!

***** *** ****. *** I *****. ******** *** identification ** **** *********** to ******** ******* ** represent *** *** ******* are **** *********.

**** **** * *** representing * ****-*** ******* to **********, (****-****), **** is *** ******** **** multiple *-****** ******** **** clamoring ***.

* ****** ** ** could ******* **** -

IPVM Image

***** ** **** *** mentioning *** ***** ******Ministry ** ***** ***** before I did.

***, **** ********* ** only * ******** ******** if ***** **** *** being ******** ****'* ***** of *** ********. ********* **** *** *****, ** ** *** of *** ******* ********* to ****** ***** ** simply ********* *** *** might ********* **** ******.

* ****** **** ******* academic ****** ******** **** recognition ******** ***** ** either ***** ** *****-**** based *******. *****-**** ***** based ** *********** ******** of *** ******** ** an *********** ****** **** doesn't ******* ** *** it ** * ***** frame. *** **** ********** based ******** * ***-******** of *****-**** ***** *******. To ** ****, ** looks **** *** *** Gate ******/******* ** *** own ********. ** **, I **** ** ***** that **** ****** ******* like *** **** **** like * **** ** Silhouette **************. ** *** its *****-**** ***** **** three **********: ******* ****, Contour, *** **********, *** maybe *******.

***. **** ** **** we ****** **********-***** **** recognition.

**'* * ***** **** FST ********** ******'* **** on. **** *** * great ******* **** **** gait *********** ** *** method ** **************, *** it *** * *** ahead ** **'* **** I *****.

*** ** ****** * great *******? *** ** really *** **** ***********? It *** * ***** concept *** **** *** the ******* ** **** actually ***** **** ***********.

*** ******* ****'* *******, but ** ****** *** worked ************ **** ***** (very, **** *********) ************ guidelines/requirements **** ********. *** yes, **** *** **** gait *********** ***** **** their *******.

*** ******* **** *** wasn't *** *********** ** the *******, ** *** the ********* ************ **** had *** ** ** work. **** ***** ** the **** ** ****** security, ***** ***** **** if ****** ****'* **** the ************ **** *** outlined, ** ******'* ***** access. *** **** *** right ********, ** *** incredibly ********** **** ** extremely ***** ****** ** failures.

* **** ***** **** were **** * *** too ***** ** ***** of *** ********** ***** required ** **** *** system **** ** ****. It ****** ****** *** to *** **** *** needed * ****** *** every * ****** ** cameras. ** *******, **'* pretty ******* ** **** of *** ********* ********* these ****, *** ~* years ***, **** ****'* nearly ** ******.

**** ********!

****, **** *********) ************ guidelines/requirements...***** ** *** ********** power ********

**'* **** ** *** adoption **** ***** ***********. It's ********* **** **** and * **** ********** about **** *****, *** technology ***** ********** **** but ** **'* *** complex ** ****** ** put ** **********, ******** will ******.

**** *********** *******.

******** * ***’* *** this ** * ******* means ** ***********, ** seems ****** *** ****-***** forensics ** ********* ******* the *** ** *** article.

**** *** ****!

***** ***, ******. *** that ***** ** ** how *** ********** ** being ****.

******:****** *** ********* **** ****** *****'* record ** *** *****-*. They ***** **.*% ******** on * ***** *******, 95.8% ** ******** **** bags, *** **.*% ** subjects ** *****. * have ***** **** *********** to *** *******.

******: ***************** ******* **** **** **** recognition ******** ** ***** 70 ***** ** ****** and **** ** **** 100 ***** **** ****** for *** ********. **** would **** * ~**-**** FoV *** * ***** camera.

Read this IPVM report for free.

This article is part of IPVM's 6,587 reports, 888 tests and is only available to members. To get a one-time preview of our work, enter your work email to access the full article.

Already a member? Login here | Join now

Related Reports

Watrix Gait Recognition Profile on Oct 16, 2020
Watrix is the world's only gait recognition surveillance provider IPVM has...
Single Frame Gait Recognition From Michigan State and Osaka University Examined on Oct 01, 2020
Gait recognition has the potential for accurate identification at a distance,...
Ear Recognition Examined on Oct 12, 2020
Will ear recognition become a viable biometric? Facial, fingerprint, and iris...
Face Masks Increase Face Recognition Errors Says NIST on Aug 04, 2020
COVID-19 has led to widespread facemask use, which as IPVM testing has shown...
Herta Facial Recognition Plus Masks Tested on Aug 19, 2020
Masks increase face recognition errors, but facial recognition developer...
Facial Recognition: Weak Sales, Anti Regulation, No Favorite, Says Security Integrators on Jul 07, 2020
While facial recognition has gained greater prominence, a new IPVM study of...
The US Fight Over Facial Recognition Explained on Jul 08, 2020
The controversy around facial recognition has grown significantly in 2020,...
U.S. Government Accountability Office Urges Facial Recognition Regulation on Aug 27, 2020
The US Government Accountability Office (GAO) is urging facial recognition...
UK Court Rules Police Facial Recognition Needs Reform on Sep 01, 2020
A UK court has ruled that the South Wales Police use of facial recognition is...
Drain Wire For Access Control Reader Tutorial on Sep 23, 2020
An easy-to-miss cabling specification plays a key role in access control, yet...
Bias In Facial Recognition Varies By Country, NIST Report Shows on Jul 15, 2020
While many argue that face recognition is inherently racist, results from one...
Dahua Taunts Australian Government, Continues To Sell Illegal Fever Cameras on Aug 10, 2020
Dahua is effectively taunting the Australian government by continuing to sell...
Avigilon Face Mask Detection Tested on Jun 24, 2020
Face mask detection or, more specifically not wearing a face mask, is an...
WDR Cheat Sheet and Camera Tracking - 30 Manufacturers on Aug 26, 2020
Manufacturers are regularly cryptic about what WDR support they actually...
Exit Devices For Access Control Tutorial on Aug 25, 2020
Exit Devices, also called 'Panic Bars' or 'Crash Bars' are required by safety...

Recent Reports

Deceptive Meridian Temperature Tablets Endanger Public Safety on Oct 21, 2020
IPVM's testing of and investigation into Meridian Kiosk's temperature...
Honeywell 30 Series and Vivotek NVR Test on Oct 21, 2020
The NDAA ban has driven many users to look for low-cost NVRs not made by...
Ubiquiti Access Control Tested on Oct 21, 2020
Ubiquiti has become one of the most widely used wireless and switch providers...
Mexico Video Surveillance Market Overview 2020 on Oct 20, 2020
Despite being neighbors, there are key differences between the U.S. and...
Dahua Revenue Grows But Profits Down, Cause Unclear on Oct 20, 2020
While Dahua's overall revenue was up more than 12% in Q3 2020, a significant...
Illegal Hikvision Fever Screening Touted In Australia, Government Investigating, Temperature References Deleted on Oct 20, 2020
The Australian government told IPVM that they are investigating a Hikvision...
Panasonic Presents i-PRO Cameras and Video Analytics on Oct 19, 2020
Panasonic i-PRO presented its X-Series cameras and AI video analytics at the...
Augmented Reality (AR) Cameras From Hikvision and Dahua Examined on Oct 19, 2020
Hikvision, Dahua, and other China companies are marketing augmented reality...
18 TB Video Surveillance Drives (WD and Seagate) on Oct 19, 2020
Both Seagate and Western Digital recently announced 18TB hard drives...
Watrix Gait Recognition Profile on Oct 16, 2020
Watrix is the world's only gait recognition surveillance provider IPVM has...
Intel Presents Edge-to-Cloud Ecosystem for Video Analytics on Oct 16, 2020
Intel presented its processors and software toolkit for computer vision at...
Best Manufacturer Technical Support 2020 on Oct 16, 2020
5 manufacturers stood out as providing the best technical support to ~200...
Microsoft Azure Presents Live Video Analytics on Oct 15, 2020
Microsoft Azure presented its Live Video Analytics offering at the September...
Worst Manufacturer Technical Support 2020 on Oct 15, 2020
4 manufacturers stood out as providing the worst technical support to ~200...