Elevator Surveillance Guide

By Ethan Ace, Published on Aug 21, 2014

Installing surveillance in an elevator can be challenging. Small but wide areas, vandal resistance, and transmission methods all present challenges not found in other areas cameras are installed. In this note, we look at:

  • Form factor: Box vs. dome vs. specialty
  • Resolution: How much is necessary?
  • Transmission: Wired vs. wireless vs laser methods
  • Dealing with electrical contractors

Form Factor

The first decision to make when considering elevator cameras is form factor. Minidome and corner mount are the two most common options in use as they most compact compared to box, bullet, or full sized dome cameras. Other form factors, such as box or bullet may be more easily tampered with due to the low ceiling height of the elevators, and more easily knocked out of position.


The key advantage to minidomes is camera choice, as most manufacturers offer cameras in this form factor, with numerous resolution and lens options. These options are not generally seen in corner mount cameras.

However, they are more obtrusive than many corner mount housings, and do not blend into the interior of the elevator as well. Where aesthetics are the key concern, domes may not be preferred.

Corner Mount

This type of mount places the camera in a roughly triangular housing made to cover one of the elevator's corners. Some are sold as unitized housing/camera packages, while other manufacturers sell housings meant to accept a box camera. Size and appearance varies depending on manufacturer:

They key drawback to corner mount cameras is limited availability. Most manufacturers do not offer corner mount options, and those that do typically only offer one or two models, with limited resolution and lens choices. Larger corner housings built for box cameras add more flexibility, but are larger and more obtrusive.

Get Notified of Video Surveillance Breaking News
Get Notified of Video Surveillance Breaking News

Field of View/Resolution

Given elevators' small size, generally under 10' wide, users typically choose to cover the full car instead of just the doors. This gives them not only the opportunity to view comings and goings, tracking subjects throughout a facitity, but to view potential incidents in the elevator, as well. However, care should be taken that pixels per foot (PPF) does not drop below acceptable levels for recognition if no other cameras will provide facial shots of subjects, e.g. lobby and hallway cameras.

For example, using an actual 103° field of view from an elevator camera with our Camera Calculator, we can see the difference between VGA, 720p, and 1080p in a typical 8x8' elevator. Estimating ~9' to target to reliably capture subjects as they enter through the elevator doors, 720p provides 56 PPF in this scene. This is likely enough to provide identification quality video under good lighting. VGA provides only 28 PPF, too low for recognition, while 1080p provides 85, more than enough.

Mounting Height

Since most people look down while walking, and criminals may actively avoid cameras, mounting height in elevators should be carefully considered for the best chance of capture. As we found in our image quality vs. mounting height testing, cameras are typically best mounted as low as possible, with ~8' being a "sweet spot", better able to see those with heads down or hats on while also see over subjects beneath the camera.

This image shows the effects of mounting height and the subject's face angle, displaying the difference in capture quality at various mounting heights with the subject's face level as well as tilted down.

Signal Transmission

Once the camera has been selected, installers must decide how signal will be carried from the elevator. There are three typical options for this:

  • Traveler cable
  • RF wireless
  • Optical laser

Traveler Cable

Connections between the elevator car and the machine room for power and signal are made via a specialized traveler cable. This cable is attached to the car, typically to the bottom, and to the top or center of the shaft. The construction of this cable varies, but it typically contains multiple twisted pair conductors for power and control, and possibly a UTP or coaxial cable for video. 

This image shows cross-sections of various flat traveler cables:

Generally speaking, since these cables are often attached to the top of the shaft, making the cable approximately twice the height of the shaft, UTP is not a usable solution for Ethernet. Buildings of 12-14 stories can easily have a 300' traveling cable, which exceeds the maximum distance category cables can be run, before even considering horizontal runs to an equipment room or IDF. In low-rise buildings, UTP may be an option, however. Fiber-optic and coaxial cables may be considered otherwise.

RF Wireless

The second option is to opt for wireless connectivity, utilizing a pair of wireless APs between the car and bottom or top of shaft. Both are used in practice, with the bottom of the shaft generally chosen for easier servicing. In this case, local power must be obtained from the car, which may involve the elevator contractor. Power is readily available, however, due to lights and air conditioning installed in the car.

Wireless eliminates the issue of necessary conductors in the traveler cable, but presents challenges of its own. Cables and conduits located in the elevator shaft may cause interference, making wireless connectivity unreliable. Very narrow beamwidth antennas may be used to compensate for this, but antenna alignment must be carefully set and maintained over time.

Optical Wireless

Optical wireless uses a pair of laser transceivers, one mounted to the car, the other in the shaft, to send/receive data. The main manufacturer marketing this product is Qccess, whose Air@-EL300 [link no longer available] (~$2000 USD/pair) is specified to handle elevator shafts up to 75 floors. This video shows the installation and alignment process:

Qccess currently provides models compatible with analog video only, limiting resolution to D1. No ethernet products are planned. 

Optical product performance is degraded by dust, dirt, and other debris which may fall in the elevator shaft and as such should be cleaned regularly.

Dealing With Elevator Contractors

Normally, most facilities maintain service contracts with an elevator contractor, since the elevator must undergo routine maintenance. These contractors may be difficult to deal with, as a number of users have shared. They are often hesitant to modify existing traveling cables for new services, simply because it complicates (however slightly) their routine maintenance of the elevator with a system outside their control. If the traveling cable is insufficient to add video, installing a new cable is, most times, cost prohibitive, and may remove the elevator from service for several days. Both of these add up to expenses users may not wish to incur.

To avoid the coordination and expense required to have the elevator vendor add video to a car, users and integrators may attempt to add their own cable to the car. There are two things to be aware of in this case: 

  • Third parties attempting to modify the cable without the contractor's permission will void warranties and service contracts in most cases. Even leaving existing cables alone and simply zip-tying a new UTP cable to it may be frowned upon.
  • According to NEC code, hoistway cables must be listed for use in these applications, and be of type E. Standard UTP, fiber, and coaxial cables do not meet these requirements.

[Note: A 2012 version of this guide previously existed but this replaces it.]

1 report cite this report:

Covert Elevator Face Recognition on Oct 24, 2019
Covert elevator facial recognition has the potential to solve the cost and...
Comments (38) : Members only. Login. or Join.

Related Reports

Remote Network Access for Video Surveillance Guide on Jul 27, 2020
Remotely accessing surveillance systems is key in 2020, with more and more...
Converged vs Dedicated Networks For Surveillance Tutorial on Feb 12, 2020
Use the existing network or deploy a new one? This is a critical choice in...
Injes Tiny Temperature Terminal Tested on Jul 17, 2020
While temperature terminals have trended bigger, the Injes DFace801 is...
Mexico Video Surveillance Market Overview 2020 on Oct 20, 2020
Despite being neighbors, there are key differences between the U.S. and...
Door Fundamentals For Access Control Guide on Aug 24, 2020
Doors vary greatly in how difficult and costly it is to add electronic access...
Covert Elevator Face Recognition on Oct 24, 2019
Covert elevator facial recognition has the potential to solve the cost and...
Vehicle Gate Access Control Guide on Mar 19, 2020
Vehicle gate access control demands integrating various systems to keep...
Quantum Dots Potential for Surveillance Cameras Explained on Sep 08, 2020
Quantum dots are starting to be used in TVs for better images, but how will...
Mobotix Thermal Detection Camera Tested on Jun 09, 2020
For years Mobotix has struggled but now sales are surging driven by Mobotix's...
Hazardous & Explosion Proof Access Control Tutorial on Feb 27, 2020
Controlling access to hazardous environments requires equipment meeting...
Video Surveillance Cameras 101 on Feb 25, 2020
Cameras come in many shapes, sizes and specifications. This 101 examines the...
Favorite Video Surveillance Hard Drive Manufacturer 2020 on Aug 27, 2020
Western Digital and Seagate effectively have a duopoly in hard drives but...
Dedicated Vs Converged IP Video Networks Statistics 2020 on Sep 10, 2020
Running one's video system on a converged network with other devices can save...
Access Credential Form Factor Tutorial on Feb 10, 2020
Deciding which access control credential to use and distribute, including...
YOLOv5 Released Amidst Controversy on Jul 27, 2020
YOLO has gained significant attention within video surveillance for its...

Recent Reports

GDPR Impact On Temperature / Fever Screening Explained on Oct 22, 2020
What impact does GDPR have on temperature screening? Do you risk a GDPR fine...
Security And Safety Things (S&ST) Tested on Oct 22, 2020
S&ST, a Bosch spinout, is spending tens of millions of dollars aiming to...
Nokia Fever Screening Claims To "Advance Fight Against COVID-19" on Oct 22, 2020
First IBM, then briefly Clorox, and now Nokia becomes the latest Fortune 500...
Deceptive Meridian Temperature Tablets Endanger Public Safety on Oct 21, 2020
IPVM's testing of and investigation into Meridian Kiosk's temperature...
Honeywell 30 Series and Vivotek NVRs Tested on Oct 21, 2020
The NDAA ban has driven many users to look for low-cost NVRs not made by...
Avigilon Aggressive Trade-In Program Takes Aim At Competitors on Oct 20, 2020
Avigilon has launched one of the most aggressive trade-in programs the video...
Mexico Video Surveillance Market Overview 2020 on Oct 20, 2020
Despite being neighbors, there are key differences between the U.S. and...
Dahua Revenue Grows But Profits Down, Cause Unclear on Oct 20, 2020
While Dahua's overall revenue was up more than 12% in Q3 2020, a significant...
Illegal Hikvision Fever Screening Touted In Australia, Government Investigating, Temperature References Deleted on Oct 20, 2020
The Australian government told IPVM that they are investigating a Hikvision...
Panasonic Presents i-PRO Cameras and Video Analytics on Oct 19, 2020
Panasonic i-PRO presented its X-Series cameras and AI video analytics at the...
Augmented Reality (AR) Cameras From Hikvision and Dahua Examined on Oct 19, 2020
Hikvision, Dahua, and other China companies are marketing augmented reality...
18 TB Video Surveillance Drives (WD and Seagate) on Oct 19, 2020
Both Seagate and Western Digital recently announced 18TB hard drives...
Watrix Gait Recognition Profile on Oct 16, 2020
Watrix is the world's only gait recognition surveillance provider IPVM has...
Intel Presents Edge-to-Cloud Ecosystem for Video Analytics on Oct 16, 2020
Intel presented its processors and software toolkit for computer vision at...