Daisy Chained Fiber Explained

By: Brian Rhodes, Published on Jul 26, 2013

Fiber is a mainstay for networking cameras run far apart. The number of cameras seldom matches the fiber available, and having two strands to run multiple cameras can be a showstopper. In this case, 'daisy chaining', or running multiple cameras in series is a common solution, but it can be a major headache when equipment breaks. In this note we look at fiber 'daisy chaining', discussed why it is used, and what options for improving reliability are available.

Definition

In early 'peer-to-peer' networking, 'daisy chaining' was a common method of stringing together a network of devices in series. Early networking protocols like System Bus used the same method, where each device forms a 'link' in the chain, and the signal from one device carries down until being received at the destination. 

The image overviews the daisy chaining approach:

With fiber, a break in one of the chain links results in multiple cameras going out. Unlike modern ethernet networks using 'Star' or 'Fully Connected' topology, fiber optic cable frequently is pulled in a single pair. Because a single pair of fiber can traditionally handle many times the bandwidth of copper pairs, less fiber is presumed needed, and the inevitable result is 'not enough fiber' available to connect multiple cameras.

The Daisy Chaining Necessity

While a single fiber pair may be able to handle the sum bandwidth of many cameras, each device needs its own connection into the network. Because running more fiber is costly or situationally restricted, surveillance system designers are frequently forced to run multiple cameras on a single pair of fiber. Additionally, the needed switch gear and terminations required for fiber can quickly grow into tens of thousands, even for a small surveillance system.

Ideal is Expensive

Running fiber using the same topology as copper is ideal in terms of reliability. Having a multichannel 'node' gather together  several channels of fiber, with one pair to each camera, is the most dependable approach. If one segment fails, the others are unaffected.  However, this approach is significantly more costly and requires much more fiber than a chained bus. 

Get Notified of Video Surveillance Breaking News
Get Notified of Video Surveillance Breaking News

Alternatively, using a ROADM allows multiple fiber channels to combine into a single pair. However, aside from costing thousands, it requires delicate sizing and fine tuning wavelengths from each source beyond the skill of typical network installers. Unlike the 'plug & play' nature of ethernet cabling, fiber signals must be finely adjusted to avoid interference with each other in a ROADM, or significant image quality problems result. 

The image below illustrates over $80,000 in fiber, equipment, and terminations for a ~35 camera system run using a ROADM 'Star' fiber channel topology:

Out of cost necessity (or design oversight) the minimum amount of fiber is run for connecting remote cameras. Frequently, applications that cover vast outdoor spaces (eg: Parks, Playgrounds, Parking lots, Municipal Systems) have only a single pair of fibers to work with.

The image below (repeated) details the least expensive and most common approach:

Schematically, "Daisy Chaining" requires only a single pair of fiber. Using a switch with SFP ports allows for fiber to be directly interfaced via GBIC card into copper ethernet. Likewise, at every camera location, the fiber connection is broken and bridged into a 'media converter', that allows an IP camera requiring electrical (copper) signals to use a optical (fiber) network.

Each Media Converter needs two fiber interfaces, one for 'upstream' traffic, and the other for 'downstream' connectivity. With 'daisy chaining', each subsequent link depends on the links behind it for backhaul; in the example above, if Segment 2 is broken, only one camera is affected. However, if Segment 1 goes down, both cameras, and any other devices in the chain are affected.

'Best Practice' should limit linking the minimum number cameras with daisy chained fiber, however the 'design maximum' is only limited by the media converter used and the type of fiber connecting them - sometimes thirty or more cameras.

Improving Reliability

The fragility of Daisy Chaining can be minimized with a few simple additions. If an additional fiber pair can be run to the 'last' link in the chain, 'Spanning Tree', or 'Rapid Spanning Tree' can often be implemented instead. The image below shows this adjustment:

The additional fiber pair forms a 'ring' of devices. Specifying 'IEEE 802.1D (STP)' support in the switch results in a degree of 'multidirectional' failover, should a link fail.  Even if 'Segment 2' fails in the above system, the second camera still has a good backhaul connection to the man switch.

3 reports cite this report:

IP Network Hardware for Surveillance Guide on May 02, 2018
Video surveillance systems depend on IP networking equipment. In this guide, we explain the key pieces of equipment and features, explaining where...
Rugged Open High PoE NVR Examined (Razberi) on Mar 08, 2016
While cameras are routinely rated for use in harsh environments, recorders are typically much more sensitive and vulnerable, requiring extensive...
Comprehensive Surveillance Cabling Guide on Dec 17, 2014
Surveillance cabling seems mundane, yet is a critical topic. A system with the best equipment can still be a failure if the network connecting it...
Comments (6) : PRO Members only. Login. or Join.

Related Reports on Networking

Installation Course - Register Now on Aug 15, 2019
Register Now for the September 2019 Video Surveillance Install Course. This is a unique installation course in a market where little practical...
Directory of 60 Video Surveillance Startups on Jun 25, 2019
This directory provides a list of video surveillance startups to help you see and research what companies are new or not yet broadly known. 2019...
Register Now - Fall 2019 IP Networking Course on May 02, 2019
Register for the Fall 2019 IP Networking Course. For early registration save $50 off the course's normal $299 price. This is the only networking...
Subnetting for Video Surveillance on Apr 30, 2019
This guide explains when subnetting is used on security networks, and how it works. We explain how to add or remove IP addresses to your range,...
Locking Down Network Connections Guide on Apr 23, 2019
Accidents and inside attacks are risks when network connections are not locked down. Security and video surveillance systems should be protected...
Access Control Course Fall 2019 - Register Now on Apr 02, 2019
Register for the Fall 2019 Access Control Course. For early registration save $50 off the course's normal $299 price. IPVM offers the most...
Casino Security Consultant Carl Lindgren Interview on Mar 26, 2019
For more than 20 years, Carl Lindgren worked as a casino surveillance pro, while being active (and sometimes outspoken) on various online video...
Ubiquiti Favorability Results 2019 on Feb 18, 2019
Ubiquiti has quietly grown into a $1+ billion annual revenue company, with offerings across wireless, wireline network and video surveillance (see...
2019 IP Networking Book Released on Jan 14, 2019
The new IP Networking Book 2019 is a 285 page in-depth guide that teaches you how IT and telecom technologies impact modern security...
Security Sales Course 2019 on Jan 03, 2019
This sales course is customized for the needs and challenges specific to professionals selling video surveillance and access control...

Most Recent Industry Reports

TMA Apologizes to Amazon / Ring on Aug 23, 2019
Not only is Amazon / Ring making major incursions into the residential security market, the organization representing the biggest incumbents, The...
China Dahua Replaces Their Software With US Pepper on Aug 22, 2019
What does a US government banned company do to improve its security positioning in the US? Well, Dahua is unveiling a novel solution, partnering...
Security Integrators Outlook On Remaining Integrators In 2025 on Aug 22, 2019
The industry has changed substantially in the last decade, with the rise of IP cameras and the race to the bottom. Indeed, more changes may be...
First GDPR Facial Recognition Fine For Sweden School on Aug 22, 2019
A school in Sweden has been fined $20,000 for using facial recognition to keep attendance in what is Sweden's first GDPR fine. Notably, the fine is...
Anyvision Facial Recognition Tested on Aug 21, 2019
Anyvision is aiming for $1 billion in revenue by 2022, backed by $74 million in funding. But does their performance live up to the hype they have...
JCI Sues Wyze on Aug 21, 2019
The mega manufacturer / integrator JCI has sued the fast-growing $20 camera Seattle startup Wyze. Inside this note: Share the court...
Dahua 4K Camera Shootout on Aug 20, 2019
Dahua's new Pro Series 4K N85CL5Z claims to "deliver superior images in all lighting and environmental conditions", but how does this compare to...
ZK Teco Atlas Access Control Tested on Aug 20, 2019
Who needs access specialists? China-based ZKTeco claims its newest access panel 'makes it very easy for anyone to learn and install access control...
Uniview Beats Intel In Trademark Lawsuit on Aug 19, 2019
Uniview has won a long-running trademark lawsuit brought by Intel, with Beijing's highest court reversing an earlier Intel win, centered on...
Suprema Biometric Mass Leak Examined on Aug 19, 2019
While Suprema is rarely discussed even within the physical security market, the South Korean biometrics manufacturer made global news this past...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact