Bandwidth Tutorial for IP Video Surveillance Systems

Author: John Honovich, Published on Jan 07, 2012

When using IP cameras and video management systems, understanding the basics about bandwidth availability and demands is critical to planning, designing and deploying systems. Everyone in the industry should have an understanding of the basics as bandwidth is a critical factor in video surveillance

This article is focused for a non-IT audience such as security managers, electronic technicians, sales and marketing folks. I am purposely ignoring details and edge cases to help a broader audience better understand the basics.

[UPDATED: This is a 2012 revision of the original article from 2008 that reflects changes in IP camera usage.]

How Much Bandwidth is Available?

To determine bandwidth availability, you first need to determine what locations you are communicating between. Much like driving, you will have a starting point and destination. For example, from your branch office to your headquarters. However, unlike driving, the amount of bandwidth available can range dramatically depending on where you are going.

The most important factor in determining how much bandwidth is available is whether or not you need connectivity between two different buildings. For instance:

  • In the Same Building - Lots of Bandwidth: 70Mb/s to 700 Mb/s of bandwidth is generally available
  • Between Different Buildings - Scarce Bandwidth: 0.5 Mb/s to 5 Mb/s of bandwidth is generally available

The amount of bandwidth available going from your office to a co-worker's office in the same building can be 200 times more than the bandwidth from your office to a branch office down the block.

This is true in 90% or more cases. Note the following exceptions:

  • If these are different buildings but on the same campus, more bandwidth may be available.
  • If you are in a central business district of a major city, more bandwidth may be available.
  • If you are a telecommunications or research company, more bandwidth may be available.

Different Buildings

The key driver in bandwidth availability is the cost increase of deploying networks between buildings. Generally referred to as the Wide Area Network or WAN, this type of bandwidth is usually provided by telecommunications companies. One common example is cable modem or DSL, which can provide anywhere from .5 Mb/s to 5 Mb/s at $20 to $50 per month. Another example is a T1, which provides 1.5Mb/s for about $300 to $600 per month. Above this level, bandwidth generally becomes very expensive. In most locations, getting 10Mb/s of bandwidth can cost thousands per month.

Get Video Surveillance News In Your Inbox
Get Video Surveillance News In Your Inbox

Many talk about fiber (sometimes called FTTH/FTTC) but fiber to the building is not and will not be widely available for years. Fiber to the home or to the business promises to reduce the cost of bandwidth significantly. Nevertheless, it is very expensive to deploy and despite excited discussions for the last decade or more, progress remains slow. If you have it great, but do not assume it.

Same Buildings

By contrast, bandwidth inside of buildings (or campuses) is quite plentiful because the install costs are quite low. Non technical users can easily set up a 1,000 Mb/s networks inside a building (aka Local Area Networks or LANs) for less than $1,000 installation cost with no monthly costs. Contrast this to the WAN, where the same bandwidth could cost tens of thousands of dollars per month.

The cost of deploying networks in buildings are low because there are minimal to no construction expenses. When you are building a network across a city, you need to get rights of ways, trench, install on telephone poles, etc. These are massive projects that can easily demand millions or billions of dollars in up front expenses. By contrast, inside a building, the cables can often by quickly and simply fished through ceilings (not the professional way to do it but the way many people do it in deployments).

Wireless

A lot of discussion about wireless (WiMax, WiFi, 3G, etc) exists but wireless will not provide significantly greater bandwidth nor significantly better costs than DSL or cable modem. As such, wireless will not solve the expense and limitations of bandwidth between buildings. That being said, wireless absolutely has benefits for mobility purposes and connecting to remote locations that DSL or cable modem cannot cost effectively serve.

Simple point to point wireless links have become inexpensive but are limited in where they can be used. Today, 50-100 Mb/s wireless connections for a few hundred dollars are feasible (excluding installation). However, these only can be used when clear line of sight is available. This helps when you want to locate a camera 100 meters away in a parking lot but not if you want to transmit across a city.

How Much Bandwidth Do IP Cameras Consume?

For the bandwidth consumption of an IP camera, use 1-2 Mb/s as a rough rule of thumb. Many factors impact total bandwidth consumption. You can certainly stream an IP camera as low as .2 Mb/s (or 200 Kb/s) and others as high as 6 Mb/s. In 2012, the most typical IP camera being deployed are HD (720p or 1080p) using the H.264 codec at about 6-10fps. With this configuration, bandwidth consumption will be in the range of 1-2 Mb/s. Of course, the more resolution and greater frame rate you want, the more bandwidth will be used.

What Does this Mean for my IP Video System?

Just like dealing with personal finance, we can now figure out what we can 'afford':

  • Between Buildings: We have .5 Mb/s to 5 Mb/s to 'spend'
  • Inside Buildings: We have 70 Mb/s to 700 Mb/s to 'spend'
  • IP cameras: Cost us 1-2 Mb/s each

Using these points, we can quickly see what combination of IP and megapixel cameras we can use between buildings or inside of buildings.

  1. Inside of buildings, it is easy to stream numerous IP and megapixel cameras.
  2. Between buildings, it is almost impossible to stream numerous IP and megapixel cameras.

Because of this situation, the standard configuration one sees in IP Video systems is:

  • A local recorder at each building/remote site. The local recorder receives the streams from the building and stores them.
  • The local recorder only forwards the streams (live or recorded) off-site when a user specifically wants to view video. Rather than overloading the WAN network with unrealistic bandwidth demands all day long, bandwidth is only consumed when a user wants to watch. Generally, remote viewing is sporadic and IP video coexists nicely with the expensive Wide Area Network.
  • The local recorder has built-in features to reduce the bandwidth needed to stream video to remote clients. Most systems have the ability to reduce the frame rate of the live video stream or to dynamically reduce the video quality to ensure that the video system does not overload the network and that remote viewers can actually see what is going on the other side. Generally, the live video stream is sufficient to identify the basic threat. In any event, bandwidth is generally so costly, especially the upstream bandwidth needed to send to a remote viewer, that this is the best financial decision.

Conclusion

Knowing how much bandwidth is available and how much bandwidth IP cameras consume are key elements in planning and deploying viable IP video systems. Though this is simply a broad survey, my hope is that this helps identify fundamental elements in understanding the impact of bandwidth on IP video.

2 reports cite this report:

Is Bandwidth a Problem for IP Cameras? on Mar 21, 2009
Integrators often cite bandwidth as a key concern for deploying IP cameras. Let's examine what the potential issues are and where they may be...
IT Tutorial for Physical Security Managers on Feb 07, 2009
Much of the fear in IT convergence comes from new technology and operational issues of using IT for physical security systems. The goal of this...

Related Reports

Access Control Cabling Tutorial on Jan 15, 2019
Access Control is only as reliable as its cables. While this aspect lacks the sexiness of other components, it remains a vital part of every...
Last Chance - Winter 2019 IP Networking Course on Jan 10, 2019
Today is the last day to register for the Winter 2019 IP Networking course. This is the only networking course designed specifically for video...
Managed Video Services UL 827B Examined on Jan 09, 2019
Historically, UL listings for central stations have been important, with UL 827 having widespread support. However, few central stations have...
H.265 / HEVC Codec Tutorial on Jan 08, 2019
H.265 support improved significantly in 2018, with H.265 camera/VMS compatibility increased compared to only a year ago, and most manufacturers...
Surveillance Codec Guide on Jan 03, 2019
Codecs are core to surveillance, with names like H.264, H.265, and MJPEG commonly cited. How do they work? Why should you use them? What issues may...
Camera Course January 2019 on Jan 03, 2019
This is the only independent surveillance camera course, based on in-depth product and technology testing. Lots of manufacturer training exists...
European Startup Ajax Profile - They "Stand Against Evil" on Jan 03, 2019
European intrusion detection startup Ajax Systems proclaims: How are they standing against evil? And what are the differentiators and potential...
The Battle For The VSaaS Market Begins 2019 - Alarm.com, Arcules, Eagle Eye, OpenEye, Qumulex, Verkada, More on Jan 02, 2019
2019 will be the year that VSaaS finally becomes a real factor for professional video surveillance. While Video Surveillance as a Service (VSaaS)...
8MP / 4K Fixed Lens Camera Shootout - Dahua, Hikvision, TVT, Uniview on Dec 17, 2018
8MP / 4K fixed lens models are now common in lower cost lines, with nearly every Chinese brand and their OEMs now offering multiple options. To...
Ubiquiti $79 Flex IP Camera Tested on Dec 07, 2018
U.S. Manufacturer Ubiquiti has released a 1080p, integrated IR IP camera, selling it directly for $79, making this one of the least expensive IP...

Most Recent Industry Reports

Access Control Cabling Tutorial on Jan 15, 2019
Access Control is only as reliable as its cables. While this aspect lacks the sexiness of other components, it remains a vital part of every...
Gorilla Technology AI Provider, Raises $15 Million, Profiled on Jan 15, 2019
Gorilla Technology is a Taiwanese video analytics manufacturer that recently announced a $15 million investment from SBI Group, saying this...
2019 IP Networking Book Released on Jan 14, 2019
The new IP Networking Book 2019 is a 285 page in-depth guide that teaches you how IT and telecom technologies impact modern security...
Arecont Costar Layoffs on Jan 14, 2019
Arecont Vision, a Costar Company, has laid off more than 10% of their workforce in a move the company described to IPVM as a result of "important...
The False SCMP Story on Hikvision NYC AI on Jan 14, 2019
In the past week, one of Asia's largest publications, the South China Morning Post (SCMP), posted an article about "Chinese [facial recognition]...
WDR Tutorial on Jan 11, 2019
Understanding wide dynamic range (WDR) is critical to capturing high quality images in demanding conditions. However, with no real standards, any...
Pelco Favorability Results 2019 on Jan 11, 2019
Pelco had a significant favorability problem amongst integrators in our previous study (see 2016 Pelco results). Now, in the first edition of our...
Bad: Dahua Villa Video Doorbell Tested on Jan 11, 2019
Doorbells are one of the hottest segments in the residential market but Dahua's Villa Video Doorbell is the worst we have tested.   We bought and...
Last Chance - Winter 2019 IP Networking Course on Jan 10, 2019
Today is the last day to register for the Winter 2019 IP Networking course. This is the only networking course designed specifically for video...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact