Bandwidth Tutorial for IP Video Surveillance Systems

By: John Honovich, Published on Jan 07, 2012

When using IP cameras and video management systems, understanding the basics about bandwidth availability and demands is critical to planning, designing and deploying systems. Everyone in the industry should have an understanding of the basics as bandwidth is a critical factor in video surveillance

This article is focused for a non-IT audience such as security managers, electronic technicians, sales and marketing folks. I am purposely ignoring details and edge cases to help a broader audience better understand the basics.

[UPDATED: This is a 2012 revision of the original article from 2008 that reflects changes in IP camera usage.]

How Much Bandwidth is Available?

To determine bandwidth availability, you first need to determine what locations you are communicating between. Much like driving, you will have a starting point and destination. For example, from your branch office to your headquarters. However, unlike driving, the amount of bandwidth available can range dramatically depending on where you are going.

The most important factor in determining how much bandwidth is available is whether or not you need connectivity between two different buildings. For instance:

  • In the Same Building - Lots of Bandwidth: 70Mb/s to 700 Mb/s of bandwidth is generally available
  • Between Different Buildings - Scarce Bandwidth: 0.5 Mb/s to 5 Mb/s of bandwidth is generally available

The amount of bandwidth available going from your office to a co-worker's office in the same building can be 200 times more than the bandwidth from your office to a branch office down the block.

This is true in 90% or more cases. Note the following exceptions:

  • If these are different buildings but on the same campus, more bandwidth may be available.
  • If you are in a central business district of a major city, more bandwidth may be available.
  • If you are a telecommunications or research company, more bandwidth may be available.

Different Buildings

The key driver in bandwidth availability is the cost increase of deploying networks between buildings. Generally referred to as the Wide Area Network or WAN, this type of bandwidth is usually provided by telecommunications companies. One common example is cable modem or DSL, which can provide anywhere from .5 Mb/s to 5 Mb/s at $20 to $50 per month. Another example is a T1, which provides 1.5Mb/s for about $300 to $600 per month. Above this level, bandwidth generally becomes very expensive. In most locations, getting 10Mb/s of bandwidth can cost thousands per month.

Get Notified of Video Surveillance Breaking News
Get Notified of Video Surveillance Breaking News

Many talk about fiber (sometimes called FTTH/FTTC) but fiber to the building is not and will not be widely available for years. Fiber to the home or to the business promises to reduce the cost of bandwidth significantly. Nevertheless, it is very expensive to deploy and despite excited discussions for the last decade or more, progress remains slow. If you have it great, but do not assume it.

Same Buildings

By contrast, bandwidth inside of buildings (or campuses) is quite plentiful because the install costs are quite low. Non technical users can easily set up a 1,000 Mb/s networks inside a building (aka Local Area Networks or LANs) for less than $1,000 installation cost with no monthly costs. Contrast this to the WAN, where the same bandwidth could cost tens of thousands of dollars per month.

The cost of deploying networks in buildings are low because there are minimal to no construction expenses. When you are building a network across a city, you need to get rights of ways, trench, install on telephone poles, etc. These are massive projects that can easily demand millions or billions of dollars in up front expenses. By contrast, inside a building, the cables can often by quickly and simply fished through ceilings (not the professional way to do it but the way many people do it in deployments).

Wireless

A lot of discussion about wireless (WiMax, WiFi, 3G, etc) exists but wireless will not provide significantly greater bandwidth nor significantly better costs than DSL or cable modem. As such, wireless will not solve the expense and limitations of bandwidth between buildings. That being said, wireless absolutely has benefits for mobility purposes and connecting to remote locations that DSL or cable modem cannot cost effectively serve.

Simple point to point wireless links have become inexpensive but are limited in where they can be used. Today, 50-100 Mb/s wireless connections for a few hundred dollars are feasible (excluding installation). However, these only can be used when clear line of sight is available. This helps when you want to locate a camera 100 meters away in a parking lot but not if you want to transmit across a city.

How Much Bandwidth Do IP Cameras Consume?

For the bandwidth consumption of an IP camera, use 1-2 Mb/s as a rough rule of thumb. Many factors impact total bandwidth consumption. You can certainly stream an IP camera as low as .2 Mb/s (or 200 Kb/s) and others as high as 6 Mb/s. In 2012, the most typical IP camera being deployed are HD (720p or 1080p) using the H.264 codec at about 6-10fps. With this configuration, bandwidth consumption will be in the range of 1-2 Mb/s. Of course, the more resolution and greater frame rate you want, the more bandwidth will be used.

What Does this Mean for my IP Video System?

Just like dealing with personal finance, we can now figure out what we can 'afford':

  • Between Buildings: We have .5 Mb/s to 5 Mb/s to 'spend'
  • Inside Buildings: We have 70 Mb/s to 700 Mb/s to 'spend'
  • IP cameras: Cost us 1-2 Mb/s each

Using these points, we can quickly see what combination of IP and megapixel cameras we can use between buildings or inside of buildings.

  1. Inside of buildings, it is easy to stream numerous IP and megapixel cameras.
  2. Between buildings, it is almost impossible to stream numerous IP and megapixel cameras.

Because of this situation, the standard configuration one sees in IP Video systems is:

  • A local recorder at each building/remote site. The local recorder receives the streams from the building and stores them.
  • The local recorder only forwards the streams (live or recorded) off-site when a user specifically wants to view video. Rather than overloading the WAN network with unrealistic bandwidth demands all day long, bandwidth is only consumed when a user wants to watch. Generally, remote viewing is sporadic and IP video coexists nicely with the expensive Wide Area Network.
  • The local recorder has built-in features to reduce the bandwidth needed to stream video to remote clients. Most systems have the ability to reduce the frame rate of the live video stream or to dynamically reduce the video quality to ensure that the video system does not overload the network and that remote viewers can actually see what is going on the other side. Generally, the live video stream is sufficient to identify the basic threat. In any event, bandwidth is generally so costly, especially the upstream bandwidth needed to send to a remote viewer, that this is the best financial decision.

Conclusion

2 reports cite this report:

Is Bandwidth a Problem for IP Cameras? on Mar 21, 2009
Integrators often cite bandwidth as a key concern for deploying IP cameras. Let's examine what the potential issues are and where they may be...
IT Tutorial for Physical Security Managers on Feb 07, 2009
Much of the fear in IT convergence comes from new technology and operational issues of using IT for physical security systems. The goal of this...

Related Reports

Proactive CCTV "Only Affordable Video Archiving Solution" Profile on Aug 12, 2019
Proactive CCTV is claiming to offer "the only affordable video archiving solution on the market", reducing the storage typically required for H.265...
ProdataKey (PDK) Access Company Profile on Aug 09, 2019
 Utah based ProdataKey touts low cost cloud access, wireless controllers, and no dealer required national distribution availability.  But how does...
Hikvision 4K Camera Shootout on Aug 02, 2019
With their latest Smart Series 5 cameras, Hikvision is claiming cameras "fully loaded" with "state-of-the-art technology for high performance and...
Mobile Access Control Shootout - Farpointe, HID, Openpath, Nortek, Proxy on Jul 29, 2019
One of the biggest rising trends in access control is using phones as credentials but which offering is best? IPVM has tested five of the...
Siklu $400 Compact 60GHz Radio on Jul 24, 2019
Siklu first entered the video surveillance market with a $6,000 per link solution, is now aiming down market with their newest 60GHz wireless...
Avigilon ACC7 VMS Tested on Jul 22, 2019
Avigilon's Control Center 7 boldly claims it will "transform live video monitoring" with the new Focus of Attention "AI-enabled" interface. We...
History of Video Surveillance on Jul 19, 2019
The video surveillance market has changed significantly since 2000, going from VCRs to ab emerging AI cloud era.  The goal of this history is to...
Last Chance - Camera Course Summer 2019 on Jul 11, 2019
Last day to register is Thursday, July 11, 2019. This is the only independent surveillance camera course, based on in-depth product and technology...
Lens Focal Length Tutorial on Jul 10, 2019
3mm, 6mm, 2.8 - 9mm, 5 - 50mm, etc. Camera specifications often list lens lengths but what do they mean? These metrics are important in...
Directory of 60 Video Surveillance Startups on Jun 25, 2019
This directory provides a list of video surveillance startups to help you see and research what companies are new or not yet broadly known. 2019...

Most Recent Industry Reports

Verkada People And Face Analytics Tested on Aug 16, 2019
This week, Verkada released "People Analytics", including face analytics that they describe is a "game-changing feature" that "pushes the...
Dahua OEM Directory 2019 on Aug 16, 2019
US Government banned Dahua OEMs for dozens of companies. The following directory includes 40+ of those companies with a graphic and links to...
Installation Course - Register Now on Aug 15, 2019
Register Now for the September 2019 Video Surveillance Install Course. This is a unique installation course in a market where little practical...
Axis Suffers Outage, Provides Postmortem on Aug 15, 2019
This week, Axis suffered an outage impacting their website and cloud services. Inside this note, we examined what happened, what was impacted...
Hikvision Scrutinized In The Netherlands on Aug 15, 2019
Hikvision is facing unprecedented scrutiny in the Netherlands, at the same time the US government ban has taken effect. This week, a Dutch...
Axis 4K Camera Shootout 2019 on Aug 14, 2019
Axis' 4K Q3518-LVE claims the "best video quality possible", with Lightfinder super low light performance, Axis' high end Forensic WDR, and...
CheckMySystems Company Profile on Aug 14, 2019
CheckMySystems says that too many users respond, "I get an email when something is wrong" when talking about their video system maintenance plan,...
Hikvision OEM Directory on Aug 13, 2019
The Chinese government-owned and US-government banned Hikvision has become the world's largest video surveillance manufacturer and generally hidden...
Biometrics Usage Statistics 2019 on Aug 13, 2019
Biometrics are commonly used in phones, but how frequently are they used for access? 150+ integrators told us how often they use biometrics,...
US Government Ban of Dahua, Hikvision, Huawei Takes Effect Now on Aug 13, 2019
The 'prohibition on use or procurement' of Dahua, Hikvision and Huawei products and 'essential components' take effect today, August 13, 2019, one...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact