Video Analytics Person / Face / Vehicle Guide

By IPVM Team, Published Feb 23, 2021, 10:17am EST

Person, face, and vehicle detection are the most commonly offered video analytics, but understanding how they work and what challenges can break them is not easy.

IPVM Image

In this guide we examine:

  • How to tell how well an analytics provider's person, face, and vehicle detection work.
  • The different pixel density requirements for person, face, and vehicle detection.
  • Person Detection performance and most common accuracy problems
  • Face Detection: performance and most common accuracy problems
  • Face detection vs facial recognition
  • Vehicle Detection: performance and most common accuracy problems

This is part of our new Video Analytics Course starting in March.

Different ********** ** ******, ****, *** ******* *********

********* ******, *****, *** vehicles *** ** ******** by, ********* ******* ******** and **** ********. ******* learning-based ********* (***, ****) is **** ****** ** IP *******, ******* ** is ****** ** *******, critical *** ****-**** ******, and ******** **** ********** than **** ******** *******. However, ******* ******** ** often ************* **** ******** than **** ******** (******* in**** **** ********* *********** **-***** ****** ********* Tested), ************ **** *********** field ** ***** *** lighting ****** **** ***** surveillance *****.

Performance ****** *** ********* *********

***** ********* *** ** specification ****** ** ***** that *** ** **** to ********* *** **** products ****. ***** ************* often ****** ******** (*.*., up ** **%, **%, etc.), *** ******* ***** they ********* ** *** match ****** ******* ***********. The **** *** ** find *** ******** ******** is ** ******* ** specific ********** (*.*., **** IPVM ****).

*** ********* ****** **** may ******* ******* ** what *** ** ****, but **** ************* ** not ********* ** ***** this ***********. ********, ** can ** ********* ** determine,***** ********* *********** / breaking *** ******, *** **** ** one **** *** *** that ***** ** ************ since ********* ********** ** accuracy ***** ******.

** **** ******* *****, camera ************* ********* ****** cameras ** "*****" ** having "**" *********, **** for ****-***** ******* ** show *********** ******** ********. For ******* *******, ******* ****** ********* ******** 2020[**** ******* ** ** released ** ***** ****].

Pixel ******* (**********) ******** - ************ **** ******

********* ***** ******* ~*** narrower ***** ** **** than ********* ******. ******** can ** ******** ** half ****** *** ******.

IPVM Image

*** ********, **** * 1080p ******, ***** *** be ******** ** ** ~20' / ** ****, whereas ****** *** ** detected ** ** ***' / *** **** *** vehicles ** ** ***' / **** **** (******** no ************, **** ********, etc.)

IPVM Image

Person *********

****** ********* ** *** of *** **** ****** and ******** ***** *********, offering ****-**** ******** *** quicker **************.

********, ********* **** ** object ** * ****** (i.e. *** ** ******, vehicle, ** ****** *****) enables **** ******** ***** behavior ********* **** ********* or ********/********* *********:

*******, ***** *** ************* and ********** ********** *** detecting ******.

Person ********* **********

***** **** ****** ********* analytics *** ******** ** full ***** **** ***** details ** * *******, there *** ******* **** cause ******. **** ** these ******* *** ************ related ** ******* *******, due ** ************ ******** and ******* **********.

******* ** *** ** the **** ****** ********** for *********, ******** ********* snow *** **** ** people:

***** ******* ** ******** or ****** ****** (*.*. headlights ** * ****** vehicle) *** ******* ****** challenge *** ****** ********* analytics, ***** ***** ***** detections:

IPVM Image

******* ** ******* ********** in **** *******, **** people ********* ********* *** miss ********* * ****** running ******* *** ***** is ******** ** * low ***** **** (* - * ***) *** the ****** **** ** "see" *** ****** ****** as * ******:

Running-Subjects-Not-Detected

**** ****** ********* ********* are ********** ** ***** to ****** ****** **** are ******* (********, *******, etc.), ***** **** **** people ** **** *** crawling:

Crawling-Humans-Missed-Completely

**** ******* ** ****** detection ***********/********, ** *** analytic **** *** "***" the ****** ******, *** subject *** *** ** detected, ** ********* ** lost **** **** *** partially ****** ** ********:

IPVM Image

* **** ****** ******* with ***-********** *********, **** systems **** *** ******* and ****** **** ** a ******:

IPVM Image

Face *********

***** **** ********* ** relatively ******, ******* *** determining ** ** ****** in * ***** ** a **** ** **** challenging **** ******* * person ** ******* ******* a **** ** **** smaller. ********, **** ***** surveillance ******* (*.*., ** cameras, ****) **** ******* processing *****, ***** ***** more ********* *** ***** lower ******** *********.

*********** ****** ** * fundamental *******:

  • ***** ** *****: ***** it ** '****' ** detect * **** ******* directly ** *** ******, performance *** **** ************* depending ** *** * person ***** ***** **** (down, ****, *****, ***.)
  • ******** ** ***** - While ** ** '****' to ****** * **** looking ******** ** *** camera ** * ****-*** scene, *********** **** **** significantly ********* ** *** lighting ********** ** *** scene (*******, ********, *****, etc.).

******, ****-*** ***** *** easiest ** ******:

**** **** ****** *********, face ********* *********** ** also ************* ******** ** environmental *** ********** **********.

Face ********* **********

***** **** **** ********* analytics *** ******** **** direct ***** *** **** lighting, ******* ** ***** most ************ ******* *** installed, ***** *** ********** problems **** ***** ******; primarily ***** *** ********.

**** ******* *** ********* on ********, *** ******* walls/in ******* ** *****, resulting ** ******* **** images **** ****** *** top ** *** **** visible:

IPVM Image

** **** ******** * combination ** *** **** of *** ****, ** a **** *****, ******* of ***** ******* *** installed *** ****** ****** look ******** ** *******:

IPVM Image

******* *********** ******* *** face *********, ******* ** the **** ****** ********, is *** ** ****** lighting. ***** * ****** may ** ******* *******, low ***** ***** *** obscure *** **** **** blur, *****, *** *********:

IPVM Image

***** *** **** ********* are *** ***** *********** for **** *********, *******, can ***** ***-**** ******* to **** ***** **** with *** ****** *** full ********:

IPVM Image

*** **** ****'***** ********* ********.

Face ********* ** *** ***********

* ****** ********* ** mistaking **** ********* **** facial ***********; **** ********* finds ***** *** *********** determines *** *** **** belongs **. ***** **** detection ** ***********, ** it **** ****** **** recognition. **** ********* ******* generally ***** *** ********* a ****, ****** **** identifying * ***-**** ****** as * ****. ****** recognition ******** *** ****** in *** ***** ****** being ********** **** ************* a *****.

IPVM Image

***** **** *** ********* analytics, ****** *********** ******** relies ** **** ********* performance, ** ****** *********** cannot ****** ***** * face ** ********.

Vehicle *********

********* **** ******** ***** and ***** ** **** is ** ******** *** alerting ** ************* ******* or ******** ******** ** person ********* **.

IPVM Image

******* ********* ** ************* easier **** ****** ** face ********* *** **** not ****** **** **** of *** **** **********.

Vehicle ********* **********

******** *** ***** ********** are **** **** ****** to ******* ***** ****** detection **** ***** ****** or ****** ****** ******* detected ** ********:

Human-Detected-As-Vehicle

*** **** ****** ********* for ******* ********* ** that ******** *** ***** parked *** ***** ** a ****, *** **** analytics **** ******** ******** alerts *** *** **** vehicle, ***** ******* ****** a ******** *** **********:

Stationary Car Triggers Detected Constantly

** *** ****/**** *******, this ** * ****** problem.

Vehicle **************

******* **** **** ** vehicle (*.*. ***, *****, bus) *** ******** ** valuable *********** *** **************, and **** **-***** ******* detection ********* ******* ****:

IPVM Image

*******, *** ***** ** vehicles ********* ****, *** misidentification ** ****** *** SUVs, ********, *** *********** are ******.

IPVM Image

***** ******* **** ** relatively **** ** *********, based ** ******* ***** and ****, **** *** model ********* *** **** for ******* ************ ******* detection *********. **** *** more ****** **** **** learning ***/**** ********* *** require **** ****** ****** to ****** *** *** manufacturer *****/****.

Comments (8)

* *** ******* *** in **** ****** ** regards ** ****** **** analytics **** * **** seen *** **** **** 15 *****.

Agree
Disagree
Informative
Unhelpful
Funny

**** ** * ******** to ******* *********** ****** for ****** *** *** either *** ** *** industry ** ** *** have ********** **** ***** analytics.

**** ****, ***** *** certainly **** ****** **** have ******* ** *** past ** ***** - e.g., *********** ********* ** average ********, ******* ** video ********* ********* **** in ***** ** **** and ******** *********, ***.

Agree
Disagree
Informative
Unhelpful
Funny

* *** *** ***** about **** ** * Tutorial ** * ********** why ** *** ******.

* ***** *** ****** analytics ** ***** *** than **** * *** on **** *****. ******* it ** * **** teaching *****.

*-* ************** *** * product ****** ********** **** could ********* ****** ****** than **% ** **** I *** *****. **** could *********** *** **** truck, **** ** *********, coming ******** ** *** or **** **** *** camera, *** **** **** had ** **********, ***** was ******, *** **** were *** *** **** comapny **** **** **********. Another ******* ** ****** with **** ******* ( what ** ***** **** ago )

******* ( *** ******* out **** **** ** processors ****** ***** *******, had ********* ****** * camera **** ***** ********* men ** *****, *** in ********, *** ** uniforms, *****, **** ******** in ***** **** ****** at ********, *** *** common ********* *** **** dual *********, ****** **** behind *** ******** **** a ***** ** ******** bases **** ******** ** South ****** , ** same ******, ******** ******** areas, ***... ( **** showed **** ***** ********** the ******* ** ** before **** *** ** LAX ).

*** ***** ******** *** long *** *** ******* left ** *** *** in *********,*** ** **** more ***** ********* **** do ** **** ***** with "*** *********" **** used ***** ********* ** military ****** ** ******* objects ***** ***** ** "bad" ******* ******* **** a ********** **** **** a *****,*** **** ******** at **** **** ** the **** ****** *** that *** **** **** 12 *****-** ***** ***.

**** **** **** ****** analytics ***** ********** ** cameras *** ****** *** managed ********* **** ***** scenarios, ********** ** *******, live ******** ********** ************, ect......So *** ********* ** tests ** **** ** real *****. ***** ********* of ***** ** *** analytics ***** ** **** world *****.

** **** *****, ********* are ***** ****** *** still *******, *** **** a **** *** ** go. **** ** ***** analytics * *** ** this *** *** ** good *** ** **** a ***** ***** ********.

**** *** **** * years, *** *** *** analytics **** ***** ***** change *******. **** **** we *** **** ** actionable ************ /********* ** CRM ** ***** ***. Way ***** ** ***** competiton. *** ********* ******** but ***** *********.

*** ******* ***** ********* company **** ******** ****** competed ******* *** ***** companies *********, **** **** time ***** **** **** though **** **** ****, patents, ******** ********

Agree
Disagree
Informative
Unhelpful
Funny

* ******** ******* ** a ****** ** *** imager *******. *** ****** their ********* ** *** in *** *** **** up *** **** ***** still ***** ***** *** bugs.

Agree: 1
Disagree
Informative
Unhelpful
Funny

**** **** **** ***** first **** ** * company ******* **** * used **** **** ****** better **** *** ***** manufactuer ** *********.

** ******* ** ****, if ** ****** ** crawling ** * **** and ***** ** * certain ****** ** *****, or **** *** * hummingbird ***** **** ****** in ***** ** *** lens, **** ***** ********* on *** ****** ************ today *** **** * false *****.

Agree
Disagree: 1
Informative
Unhelpful
Funny

** *****, ********** ** what ***** ******* ** this *******, * ***** it ** **** ** say **** ***** ********* and ******** ****** **** broadly **** ************* ******* over *** **** * years, ******* ** *** maturation ** **** ******** (including **** ************).

Agree: 1
Disagree
Informative
Unhelpful
Funny: 1

***** ******** *** **** written. ******!

Agree
Disagree
Informative
Unhelpful
Funny

* ******* ***** ** a *********** ** ******* of *** ******** ****. Just ******* *'* *** you ****. **** ** I **** **** ** early ** *** *******. Thank ***

IPVM Image

Agree
Disagree
Informative
Unhelpful
Funny
Read this IPVM report for free.

This article is part of IPVM's 6,963 reports, 927 tests and is only available to members. To get a one-time preview of our work, enter your work email to access the full article.

Already a member? Login here | Join now
Loading Related Reports