Advantages of RAID6 over RAID5 For Video Surveillance

Author: Carl Lindgren, Published on Apr 15, 2009

For large scale video surveillance deployments, like casinos, the enhanced redundancy provided in RAID6 over RAID5 is critical to minimizing video loss and ensuring system performance. [Note: If you are not familiar with RAID, view a RAID tutorial and a general comparison between RAID5 and RAID6]

Background

We have been recording all of our cameras using an NVR system since late 2003. Our original system consisted of 28 servers, each recording up to 32 cameras. The servers originally used 16-bay RAIDs with 250GB drives in a RAID 5 configuration. The majority of the RAIDs were SCSI/PATA, which means they used standard IDE desktop drives in the RAID enclosure. These drives were not designed to handle continuous video recording and began to fail at an alarming rate within a year. Our drive vendor replaced these with RAID Edition drives in early 2005, which resolved some of the issues. At the time, we had a bit over 830 drives in use.

Drive Failures

Even after replacing all 830 drives, we still experienced drive failures. This is normal for any large system. It has been estimated that approximately 1% of installed hard drives will fail in the first year of operation; with that rate climbing as the drives age. There are many possible ways for hard drives to fail and RAID systems can recover from most failures by rebuilding the RAID system using the parity information that is striped across the drives.

RAID 5 uses one parity stripe to store data that can be used to reconstruct the contents of a failed drive onto a replacement drive. That is the reason why most RAID manufacturers recommend installing at least one global hot spare in each RAID chassis. When a RAID encounters an error with a hard drive, it “rebuilds” the data that was on the failed drive onto the spare using the parity data. The failed drive can then be replaced with a new drive; which is designated as the new hot spare. This process can be done over and over as drives fail and theoretically will keep the RAID storage operating continuously with no data lost.

Unfortunately, there are drive failure scenarios that can not be accommodated by most RAID storage systems that are used for recording video. This issue is unique to video recording and seldom surfaces in RAID systems used by other applications. The key is that for most applications, written data is “verified” during the write process. This means that after a piece of data is written, it is read and compared to the original data before the next piece is written. If the compare process fails, the area of the disk that failed is marked bad by the drive and the data is re-written to another area of the disk reserved for that purpose.

This process works well when the system has the time to verify the write and repair any errors encountered. For most applications, there is no requirement to write data continuously and the computer’s operating system can wait the relatively short period required to verify each write and relocate data if an error is encountered.

Video recording is a completely different animal. It has been estimated that CCTV video recording is 90% write versus 10% read. I am of the opinion that is a conservative estimate. An analysis of our system leads me to estimate that the percentages are somewhere between 99% to 1% and 99.9% to 0.01%. RAID systems set up for video recording seldom, if ever, are set up to verify the data as it is written.

This sets up a possibly fatal scenario. One of the failure modes of computer hard drives is something called “Read Element Failure”. The best definition I can find of that is the drive is unable to read all or part of the data written to it. This could be the result of a complete failure of one of the read heads, or just a bad area of a disk that has not been relocated by the drive’s automatic systems.

Sign Up for the IPVM Newsletter
Sign Up for the IPVM Newsletter

Since the drives in a video recording system don’t normally automatically read the data after it is written and the system operators only play back a very small fraction of the video being recorded, a drive could happily chug along writing data that is unreadable for a long time. Neither the system nor the operators would ever know that there is a problem. That is, until a drive fails with a problem that is recognized by the RAID system.

When the RAID system encounters a drive failure that it recognizes, it will attempt to rebuild the RAID set using the parity data recorded across all of the drives. That is where the problem becomes acute. If the RAID system also contains a drive that has a Read Element Failure, it is very possible that bad area contains parity data. If it does, the rebuild will fail.

On a RAID 5 system, if a rebuild fails because the parity data is corrupt or unreadable, the system now has two bad drives and the RAID set is lost. This happened to us at least six times during the three years that we used our original RAID 5 systems.

RAID 6

RAID 6 works a bit differently than RAID 5. Although it can encounter the same drive failure scenarios as RAID 5, its ability to recover from them is greatly enhanced by the method RAID 6 records the parity data. Instead of writing one parity stripe across all drives in a RAID set, RAID 6 writes two completely independent parity stripes. There are two advantages to this: RAID 6 is able to recover from the simultaneous failure of two drives in the enclosure and its two parity stripes are in different areas, allowing the system to read parity even through multiple failures.;

This has been proven by us in our recording environment. In 2006, we replaced all of our servers and RAIDs. Our new RAIDs were set up, at our insistence, as RAID 6. Although we have experienced at least three instances where two drives failed in an enclosure, including at least two instances where the second drive failed during the rebuild process, we have never lost any data. The systems rebuilt both failed drives and continued to run flawlessly.

Conclusion

For these reasons, I would never recommend using RAID 5 in a critical video recording environment. The risks of data loss are too great.

Carl Lindgren is the Surveillance Technician Manager for the Sycuan Gaming Commission at Sycuan Casino in El Cajon, CA. Carl can be emailed at clindgren@sycuan.com

1 report cite this report:

How Costly are Hard Drive Failures? on Apr 29, 2009
Storage tends to be one of the more costly and problematic parts of video surveillance systems. Most video surveillance systems, even today, do not...

Related Reports on Failure

Favorite Video Surveillance Hard Drive Statistics 2016: Seagate vs WD on Aug 01, 2016
What is the favorite hard drive for video surveillance integrators? Two manufacturers stood out, Seagate and WD but one of them trounced the...
Video Surveillance Hard Drive Failure Statistics 2016 on Jul 22, 2016
Hard drive failures are decreasing and lifespans are getting longer, according to new IPVM statistics. Failing hard drives have historically been...
Video Surveillance Hard Drive Size Statistics 2016 on Jul 18, 2016
Many low end NVRs still use 1TB hard drives, but 10TB drives hit in the market in January 2016. So what size do integrators use most often?...
US Government Agency Highlights Analytics Failure on Jul 15, 2016
Count the US government among those not satisfied with video analytics. A US government agency held a workshop on video analytics for public...
Surveillance Repair Company On Brands and Products That Fail on Jul 06, 2016
Jonathan Pine, CEO of DVR repair company Renova provided details  about which brands of DVR's/NVR's and cameras are most commonly sent in to his...
Dedicated Micros Collapses, CEO Says Shut Up, Debates IPVM on Apr 18, 2016
No one exemplifies arrogance and bad strategy quite like Dedicated Micros CEO Mike Newton. When he was not busy running around the racetrack, he...
Large Video Surveillance Systems Guide on Oct 29, 2015
This 14 page guide explains the key uses, design factors, and players in the large system surveillance market. A global group of 80...
Video Surveillance Storage Redundancy Statistics 2015 on Oct 27, 2015
100+ integrators answered "What percentage of your projects do you use redundancy or RAID for video surveillance storage? Why? What...
The Next Failure in Wireless Video Surveillance: $18 Million Funding on Aug 21, 2015
Wireless video surveillance is one of the most difficult niches in the industry. Tens of millions have been wasted trying to build a wireless...
IP Camera Failure Rates on May 05, 2015
This research answers: What percentage of IP cameras are dead on arrival? What is the average lifespan of IP cameras? What specific...

Most Recent Industry Reports

Tailgating - Access Control Tutorial on Aug 25, 2016
Despite costing thousands of dollars per door, electronic access control systems are vulnerable to an easy exploit called 'tailgating'. Unless this...
Manufacturer Trade Show Costs Analyzed - Spending Millions on Aug 25, 2016
Ten million dollars plus is spent by manufacturers at every major trade show (e.g., ISC West, ASIS, IFSEC, Essen, etc.) And the bigger booths...
Axxon Next VMS 4.0 Tested on Aug 24, 2016
AxxonSoft is one of the biggest VMS vendors (reporting 263,000 channels sold in 2015), especially strong in their home market of Russia, but not...
Hikvision 20% Price Cut Twice In A Month on Aug 23, 2016
Days after celebrating the Chinese government's commitment of up to $3 billion USD more in funding, Hikvision USA is now launching up to 20% across...
HD Analog DVRs With Exacq, Milestone and Genetec VMSes Tested on Aug 23, 2016
HD analog offerings have proven to deliver HD video at radically lower prices. However, the main limitation for professional applications is their...
1 New Acquisition Per Year Planned for Qognify (Former Nice Security) on Aug 23, 2016
Want to be acquired? Qognify, the former Nice Security Group, has big money behind it and the plans for multiple acquisitions. In this note, we...
Axis Wins ~$20 Billion Retailer With End to End Solution on Aug 22, 2016
Sorry, Axis partners, you are not needed here. Axis 3.0 is ramping up with the Avigilon approach. Based on internal Axis documents, IPVM explains...
FLIR Expands Enterprise Distribution Through ADI on Aug 22, 2016
FLIR and Hikvision have been the two top-stocked video brands at ADI, according IPVM analysis and ADI Awarded FLIR "Vendor Of The Year" in January...
Directory Of 66 Video Analytics Suppliers on Aug 22, 2016
This directory provides a list of video analytics providers to help you see and research what options are available. [premium_content] Video...

The world's leading video surveillance information source, IPVM provides the best reporting, testing and training for 10,000+ members globally. Dedicated to independent and objective information, we uniquely refuse any and all advertisements, sponsorship and consulting from manufacturers.

About | FAQ | Contact