Member Discussion

Trueface, Facefirst, Anyvision Facial Recognition Bias

What do companies like TrueFace, Anyvision and FaceFirst say about the bias towards people of color and their algorithms? They have been very quiet.

Login to read this IPVM discussion.
Why do I need to log in?
IPVM conducts unique testing and research funded by member's payments enabling us to offer the most independent, accurate and in-depth information.

****** **** *** *** asking *** * ***% proof ** *******.

*** ** *** ******** world **** **** ** to **** *********?

* **** * ****.

****** **** ****** *********** bias ** ******* **** and **** ** ******** facial ***********, ******* *** these ***** ******* ***** stuck ** *** ***** daily, *** ******** ** bias **** ***** ****** recognition ********* **** ***** us ** *********** ** answer ********* ********* **** clients.

** **** * **** / ** ******* ** these *************** ********* ****.

*** *******, ******, ********* some **** ***** *** methodology *** ******* **** to ****** **** ** ML ******* **** ****. You *** **** **** about ** **** -*&* | ******, ***.. ** **** **** work ** ** *** progress *** ** **** in ******** **** ** companies *** ******* ** make ** * ********. I'd **** ** **** from *** *********. *** customers ********** ** **** rec ****** ********** ********* about ********* *********** ****** skin ***** *** ******?

@****** - **, **********,**** ********* * *** pieces ** ******* ** bias **** *** ** viewed *****.

**** ********** ** **- ****** ******** ****** Meetup

******** **** **** ********

****** - ******* **** Mitigation- * ******* **** of ********* ** **** mitigation ******** *** **/** researchers *** *********.

*** ** ** ****** because ** ****** ** probability. ** **** ***, Face *** ************** (****) allow *** *** * confidence ****** *** *** customer ** ******. ** with * **** ********** and *** **** *** many *******, ** **** too *** ** * confidence ******* *** *** will *** *** **** images.

*** ** ** ****** because ** ****** ** probability

********. *** *** ****** is *** ****** *** how **** ** *****, which *** **** ************ amongst *******.

******. ** ** ****** because ** **** ****** data. **** ** *** classic "******* ** - garbage ***" *******.

**** ***** **** ****** haven ***** **** ************ ****. **** ***** to ***** *** * great *******. ***** **** a "******* ****" ** the ***/*** ** * color-calibration ********* *** ***** cameras ***** ******** * middle-aged ***** *****. ** a ******, *****'* ***** performance ******* ******* ******* subjects *** ****** **** performance ********. **'** ****** a ******* ******* **** datasets ***** ******* ** train ****** ****. **** if **** *** * diverse *** ** ***** to ***** ***** ****** nets, **** ***** **** to ****** * *******. This ******** ********** *********** the ********.