X
Get all access to the world's best video surveillance information.
Logo 8fbbe83a6ce128d4940dbb3787cc2aeaf3d9938b15d0b711b17d116501531882
2016 book promo

PPF Test - Getting High Quality Surveillance Video

Author: John Honovich, Published on Apr 04, 2010

Megapixel cameras foster hope for much higher quality surveillance video but how much more and in what conditions? In this report, we answer these questions in depth based on extensive testing.

The most aggressive marketing claims suggest a single megapixel camera is equals 95 CCTV cameras. Does that mean you could literally replace 95 CCTV cameras? If not 95, is it 25 or 16 or 4, etc.?

A 'Magic Number'

The megapixel vendors are now advocating a 'magic number' of 40 pixels per foot. They claim that if your Field of View provides 40 pixels per foot (e.g., a 1920 x 1080 camera covering a 48 foot wide FoV), then you can see facial details and license plates clearly.

Some vendors qualify their number by saying it is a 'minimum' but then fail to offer any further disclosure or explanation. This is as helpful as the government coming to your house and telling you owe a minimum of $1,000 in taxes.

Our Test

Over a 3 week period, we went out and tested these assumptions using a variety of cameras, resolutions and Field of Views. The video below overviews how we approached our tests:

Our Findings

Our test results show that achieving high quality surveillance is much more complicated than the magic numbers nor multipliers being advocated today. While megapixel surveillance can significantly improve surveillance coverage, many issues and nuances exist that must be properly appreciated when designing and deploying systems. We examine these in depth in the PRO section.

Log in to read this IPVM research.
Why do I need to log in?
IPVM conducts unique testing and research funded by member's payments enabling us to offer the most independent, accurate and in-depth information.

********* ******* ****** **** *** **** ****** ******* ************ ***** *** *** **** **** *** ** **** **********? ** **** ******, ** ****** ***** ********* ** ***** ***** ** ********* *******.

*** **** ********** ********* ****** ******* * ****** ********* ****** ** ****** ** **** *******. **** **** **** *** ***** ********* ******* ** **** *******? ** *** **, ** ** ** ** ** ** *, ***.?

A '***** ******'

*** ********* ******* *** *** ********** * '***** ******' ** ** ****** *** ****. **** ***** **** ** **** ***** ** **** ******** ** ****** *** **** (*.*., * **** * **** ****** ******** * ** **** **** ***), **** *** *** *** ****** ******* *** ******* ****** *******.

**** ******* ******* ***** ****** ** ****** ** ** * '*******' *** **** **** ** ***** *** ******* ********** ** ***********. **** ** ** ******* ** *** ********** ****** ** **** ***** *** ******* *** *** * ******* ** $*,*** ** *****.

Our ****

**** * * **** ******, ** **** *** *** ****** ***** *********** ***** * ******* ** *******, *********** *** ***** ** *****. *** ***** ***** ********* *** ** ********** *** *****:

Our ********

*** **** ******* **** **** ********* **** ******* ************ ** **** **** *********** **** *** ***** ******* *** *********** ***** ********* *****. ***** ********* ************ *** ************* ******* ************ ********, **** ****** *** ******* ***** **** **** ** ******** *********** **** ********* *** ********* *******. ** ******* ***** ** ***** ** *** *** *******.

[***************]

Key ********

*** ********* ****** *** *** *** ******** / ***************:

  • ** 'ideal' ******** ********** - even daytime lighting, no shadows, no glare - you need closer to 50 pixels per foot to see facial features clearly and read US license plates.
  • ** **** ******** *********** ******** ********** - ******** shadow ** ***** - you need ~20% more pixels to 'overcome' decrease in contrast.
  • ***** ****** *** ************ ****** **** **** ****** ** ****** ** ***** ********** *** ***, ** *** **** ** ****** **** ****** ******** *** ******* ****, *** ****** target ** ****** *** ****.
  • ** *****, **** **** * ** ** *** ** ******** (**** ****** ******), ******* **** **** *************. ** ** **** ** *** *******, ***** **** ** ********* *** *** ******* ***** ***** **** ************* ****** *** ***** ***** ********** ******* *** ** ****. ** night, *** ***** **** *** ****** *** **** (or more).
  • ***** quality ********* ******** as the FoV width expands. There's no single point where quality goes from good to bad. Details gradually appear or disappear as the FoV width changes.
  • ** ***** numerous ****** ** ******* ******* *** ************ ***. While traditionally, surveillance applications had 3 quality levels (often called personal, action, scene), we found at least double that number. As quality degrades, some details still remain. Those details can still provide benefits depending on the application.
  • **** ******* ***** ** good ****** ** ******** **********. Because quality gradually degrades, some users may find different levels of quality to be sufficient. For example, two people may view video from the same camera and one will judge 45 pixels per foot to be sufficient while another may prefer 55 pixels per foot.
  • Vertical ******** ******* varies dramatically with the focal length / horizontal angle of the lens. With a wide angle lens, it is nearly impossible to get facial features at more than a few feet distance from the camera (even with megapixel). With a telephoto lens, facial features can be captured at fairly far distances. The tradeoff of course is the width of FoV covered.
  • ****** **** HD ** *** ******** ******** *** ***** ****. In FoVs narrower than 20-40' wide, it is unlikely that significant material difference can be visually observed. At wider FoVs, modest increases in ability to detect meaningful details was shown.

How ** ******* ***********

****** **** *** ***** ***** ** ********** *** ** *** *** ****** ****** ******** *** *** ** ********* ***** ***********.

Download ****** ****** *** ********** ******

*** **** ******, ** *** ******* * ****** ** *** ******** ****** ****** *** ****** ** *******.

** ********* *** ***** **** ****** ** *** ********** ****** ** ***** ****** ******* * ******** ** ****** **** * ******* ** *** ****** *** ***********.

************, **** *** * *** ** *** ******** ***** ***** ** **** *** *** ***** *** '***' ***** ** *** *** ** ********* *** *****:

Lighting ******** ******

** *** ********* ** *** ******, ** ******* ********* *** ****** **** '*****' **** **** ******* **********. ** *** ********** *****, ** ********* * ***** ****** ******** ********* **** ****** *********** ******:

  • ****** *******/***** *** ******** *** ****** ** ****** ****** *** *** **** ***** ** ******* ************** **** ****** *** ****** ** *** ***.
  • ******* ****** **** ***** ****** ** ********** ****** ******** **** ***** ************* ****** **********, ********* ************ ****** ****** *** **** ** ******** ****** ** *** **** ***** ** ***.
  • ********* ** ******** ** ***** *** ****** ******* *** ***** ** *** **** ********* ********** **** ******* ****** ** ** ********* ******** **** ** **********.

Pixels ****** / ******* ********

*** ***** ******** **********, ** **** ********* * *********** ******* ****** **** *** **** ****** ** ********. ***** *** *** ********** (******* ****** ******* ** ***** ********* ******* *******, ******, ***.)

  • ********* ** ****** ******: < * ****** *** ****
  • ***** ***** ** ****** (***, ******): * - ** ****** *** ****
  • ****** *********** ***** ** ****** (****, ***********, ***.): ** - ** ****** *** ****
  • ****** **** (***** ******** ** *** ******* **** *** ******): ** - ** ****** *** ****
  • ***** **** (***** ******** * ********): ** - ** ****** *** ****
  • **** ** ******* (**** ***** ******* ** **** *** ****): **+ ****** *** ****)

** *** ********** *****, ** ******* *** ** ********* **** *** *** ************ ** ******* ***********:

Differences ** *** ***** *** ******* ***********

********* ********** *** ******** *** ***** ** *** **** * ****** *** *****. ** *** ***** *****, ** *********** ****** **** * **, *** *** *** ****** *** *******. * *** *** ****** ** ****:

  • *** ** *****, ****** ***** ******** **********. ** *** *******, ***** ******** *** ***** ****** ********, *** ********** ** **** ********** *********.
  • ** ******** **** (**** **-** ****), *** *** ******** ** **** *** ********** ********** ******* * *** *** *** ******.
  • *** *** **** ** **** ** ** ***, * **** ******* **** ****** **** *** ** *** (** ** ******** ***** *** ******** ******** ** ******). ****** **** *** ** *** ***** **** ***** ** ** - *** **** ****.
  • ** * ***' *****, ** ** ****** **** ******** '*****' ** ***** *** * *** ****** *** ******* ******* ** *** ***, ******, **** *** ******** ** * *******.

** *** ********** *****, ** ******* *** ** ******* ** **** ***** *** **** *** *********** ** **** ********:

Variances ** ****** ****** *** ******* / ****** ******

******* / ****** ****** **** *********** *********. **** *** **** ** *** ****** *** *** ********** ****** ** *** ***** *** ***** ******. **** ** ********** ********* *** ** ****** *** *** ******* ****** **** ***** ********** ****** **** ***** ******** ** *** *****.

** *** ********** *****, ** ******* *** ******** *** *** ** ****** *** ******* ******.

Variances ** ******** ** ****** **** ********** **** *******

** *** ***** ** ***, ** **** ********* ************ ** *** *** *****. ** ******, *** **** *** ****** *** ** ******** **** ******* **** ******* **** *** ********* ****** *** ******** ******** ****.

**** ********* ********* ******** *** *** ** **** ***** ** ***** **** ***** ****** ** **** *** *** ***** *** ******* *****. *** ******** ** **** ***** '*******' ***** ************* *** ***** *** ***** ********. *** **** ********* ****** ** *** ******* ** ****** ****** *******. **** * **** ***** ****, * ****** **** **** ** **** **** *** ****** ** ****** ******** ** **** ***** ****** ******* ********. ** * ********* ******* ** **** *********** ********, **** *** **** ******* **** *****'* **** ***** ** ****.

** * *********, ***** ** *** ****** *** **** *** *** ****** ***** ******* **** *******. ****** **** *** **** ********* *** ****, *** **** ******* *** **** *** ** ***** *******. [**** *** * */*' ******, * ** ****** *** ** ******** **** * *.* ** ****, * ** ****** *** **** * * ** **** *** * ** ****** *** **** * **** ****.]

** ** *********** ****, *** *** ***** ***** ***** ********** **** ************.

Summary ********

********* *** ************>, *** ********* ****** *** *** *** ******** / ***************:

  • ** 'ideal' ******** ********** - even daytime lighting, no shadows, no glare - you need closer to 50 pixels per foot to see facial features clearly and read US license plates.
  • ** **** ******** *********** ******** ********** - ******** shadow ** ***** - you need ~20% more pixels to 'overcome' decrease in contrast.
  • ***** ****** *** ************ ****** **** **** ****** ** ****** ** ***** ********** *** ***, ** *** **** ** ****** **** ****** ******** *** ******* ****, *** ****** target ** ****** *** ****.
  • ** *****, **** **** * ** ** *** ** ******** (**** ****** ******), ******* **** **** *************. ** ** **** ** *** *******, ***** **** ** ********* *** *** ******* ***** ***** **** ************* ****** *** ***** ***** ********** ******* *** ** ****. ** night, *** ***** **** *** ****** *** **** (or more).
  • ***** quality ********* ******** as the FoV width expands. There's no single point where quality goes from good to bad. Details gradually appear or disappear as the FoV width changes.
  • ** ***** numerous ****** ** ******* ******* *** ************ ***. While traditionally, surveillance applications had 3 quality levels (often called personal, action, scene), we found at least double that number. As quality degrades, some details still remain. Those details can still provide benefits depending on the application.
  • **** ******* ***** ** good ****** ** ******** **********. Because quality gradually degrades, some users may find different levels of quality to be sufficient. For example, two people may view video from the same camera and one will judge 45 pixels per foot to be sufficient while another may prefer 55 pixels per foot.
  • Vertical ******** ******* varies dramatically with the focal length / horizontal angle of the lens. With a wide angle lens, it is nearly impossible to get facial features at more than a few feet distance from the camera (even with megapixel). With a telephoto lens, facial features can be captured at fairly far distances. The tradeoff of course is the width of FoV covered.
  • ****** **** HD ** *** ******** ******** *** ***** ****. In FoVs narrower than 20-40' wide, it is unlikely that significant material difference can be visually observed. At wider FoVs, modest increases in ability to detect meaningful details was shown.

*********?

*** ****** ******** * **** ******* ** ******, *** ** *** ***** ** **** ********** ** ** *** ******. ** *** **** ************* ** ********* ** ******* ******, ****** ***.



Other Reports on IP Cameras

Network Ports for IP Video Surveillance Tutorial on Jan 20, 2016
Network ports are critical for remote video viewing and recording and without proper configuratio...

H.265 / HEVC Codec Tutorial on Jan 19, 2016
H.265 / HEVC has been promised for many years as the next big CODEC and the successor to H.264. N...

Camera Course Winter 2016 (Closed) on Jan 13, 2016
Here is what is new for the 2016 course: HD analog: Expanded coverage on non-IP HD offerings...

IP Camera Pricing and Markups Statistics 2015 on Dec 11, 2015
100+ integrators told IPVM their average IP camera pricing and markups. In this note, we share s...

Camera AoV / Focal Length Comparison on Nov 24, 2015
Use the IPVM Camera Calculator to better understand the tradeoffs between different Angle of View...

How a Security Camera is Made on Nov 18, 2015
While in China, we toured factories, seeing how cameras were made. In the 15 minute video inside...

IP Camera Trolling - Cybersecurity Showcase on Nov 09, 2015
If you want to convince your customers about the importance of cybersecurity and the risk of bein...

Network Connectors for IP Cameras Guide on Nov 05, 2015
Fewer installation tasks are as nuanced as terminating cables and attaching connectors. Fortunate...

IP Camera Bootup Shootout 2015 on Nov 04, 2015
IP cameras, like PCs, take some time to boot up. And just like PCs, the amount of time can vary g...

Network Cabling for Video Surveillance Guide on Oct 30, 2015
In this 14 page guide, we teach the fundamentals of network cabling for video surveillance networ...


Most Recent Industry Reports

US Capital Paying for Homes and Business to Get Security Cameras on Feb 09, 2016
Since 9/11, US cities have spent hundreds of millions collectively on city-wide video surveillanc...

Brivo Access Control Company Profile on Feb 09, 2016
This is our 9th in a series of access control company profiles. In this entry, we cover Brivo. P...

Axis Is In Denial About HD Analog on Feb 08, 2016
For more than a decade, Axis' #1 argument against analog has been no HD. This, of course, is no...

Surveillance Commissioning / Install Checklist on Feb 08, 2016
This 60+ point checklist helps end users, integrators and consultants verify that installation is...

Favorite Camera Manufacturers 2016 on Feb 08, 2016
The market has changed significantly since 2014, where our previous Favorite Camera Manufacturer ...

Mega Chinese Electronics Manufactuer Xiaomi Yi Camera Tested on Feb 05, 2016
Xiaomi's revenue is 4 to 5 times larger than Hikvision's. Only in business for 5 years, Xiaomi ha...

Trade Mag Admits 84% Prefer Online Over Print on Feb 05, 2016
Some say the industry is so old and conservative that print is still important. Well, even a pri...

Hikvision Video Analytics Tested on Feb 04, 2016
We tested Hikvision's video analytics on six Hikvision models, ranging from entry level to high e...

Last Chance - IP Networking Course on Feb 04, 2016
Our most popular course starts next week (February 9th), with all new training of network securit...

Add Your Preferred Camera Manufacturer to the Calculator on Feb 03, 2016
One of the most popular features of our Camera Calculator is choosing specific models. Indeed, me...